
UNIVERSITEIT ANTWERPEN

PHD THESIS

A Foundation for
Multi-Paradigm Modelling

Een Onderbouw voor Multi-Paradigma Modelleren

Auteur:
Yentl VAN TENDELOO

Promotor:
Prof. dr. Hans VANGHELUWE

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

https://www.uantwerpen.be/
http://msdl.cs.mcgill.ca/people/yentl
http://msdl.cs.mcgill.ca/people/hv




Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Usefulness of MPM . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Use of MPM Techniques . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Foundation for MPM . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 9
2.1 Domain-Specific Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Process Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Multi-Paradigm Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Finite State Automata . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Causal Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Statecharts + Class Diagrams . . . . . . . . . . . . . . . . . . . 26
2.4.6 Discrete Event System Specification . . . . . . . . . . . . . . . . 27
2.4.7 Formalism Transformation Graph + Process Model . . . . . . . . 31

3 State of the Art 35
3.1 Language Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Instantiation and Conformance . . . . . . . . . . . . . . . . . . . 35
3.1.2 Model Finding and Type Inference . . . . . . . . . . . . . . . . . 37
3.1.3 Multiple Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.4 Multi-Level Modelling . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Procedural Code . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Megamodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



iv CONTENTS

3.5 Modelling as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Tool Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Modelverse Specification 47
4.1 Types of Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Modeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Language Engineer . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Modelverse Developer . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Multi-Paradigm Modelling . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . 56

4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Modelverse Interface . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Modelverse Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Modelverse State . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Modelverse Development using MPM 67
5.1 Graphical User Interface (GUI) . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Network Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Core Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Formalism Transformation Graph . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Conformance Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS v

5.6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.5 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Physical Type Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.7.5 Dynamic PTM Optimization using Activity Models . . . . . . . . 109
5.7.6 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Service Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.8.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.8.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8.5 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 FTG+PM Enactment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.9.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.9.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.9.5 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 130

5.10 Action Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.10.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.10.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.10.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 138

5.11 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.11.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.11.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.11.4 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 141

5.12 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.12.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.12.2 Background: DEVS Modelling and Simulation . . . . . . . . . . 143
5.12.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.12.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.12.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.12.6 Link to Requirements . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Modelverse as a Foundation for MPM 157
6.1 Power Window Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.1 Requirement 1: Domain-Specific Modelling . . . . . . . . . . . . 158
6.1.2 Requirement 2: Activities . . . . . . . . . . . . . . . . . . . . . 159
6.1.3 Requirement 3: Process Modelling . . . . . . . . . . . . . . . . . 161
6.1.4 Requirement 4: Multi-User . . . . . . . . . . . . . . . . . . . . . 161
6.1.5 Requirement 5: Multi-Service . . . . . . . . . . . . . . . . . . . 162
6.1.6 Requirement 6: Multi-Interface . . . . . . . . . . . . . . . . . . 162
6.1.7 Requirement 7: Model Sharing . . . . . . . . . . . . . . . . . . . 162



vi CONTENTS

6.1.8 Requirement 8: Access Control . . . . . . . . . . . . . . . . . . 163
6.1.9 Requirement 9: Megamodelling . . . . . . . . . . . . . . . . . . 163
6.1.10 Requirement 10: Portability . . . . . . . . . . . . . . . . . . . . 163

6.2 Live Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2.3 Running Examples . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4 Modelverse Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.4.2 Background: DEVS Debugging . . . . . . . . . . . . . . . . . . 206
6.4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Conclusions 221
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A Modelverse State Specification 227
A.1 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.2 CRUD interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.2.1 Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.2.2 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.2.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.2.4 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B Action Language Specification 235
B.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B.1.1 If condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.1.2 While loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
B.1.3 Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
B.1.4 Continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
B.1.5 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.1.6 Resolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
B.1.7 Assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.1.8 Function Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
B.1.9 Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.1.10 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.1.11 Declare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.1.12 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



CONTENTS vii

B.1.13 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . 252
B.2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256





Acknowledgments

I would like to thank a number of people, without whose help this thesis would not have
been possible.

First off, this thesis would not be here, and I probably would not have started a scientific
career, if it were not for my supervisor, Hans Vangheluwe. Already from my Bachelor
thesis, your passionate encouragement has stimulated me to get the best out of myself.
During my Masters, you introduced me to research and the scientific community, creating
various opportunities for me to continue growing. Then during my PhD, you offered me
the necessary freedom to explore and develop my interests, while offering guidance where
necessary. Throughout these years I have learned a great deal from our discussions, both on
and off topic.

Thanks to my colleagues, not only for the many collaborations and new insights, but also
for the many lively discussions and lunches. In particular, thank you Simon for sharing an
office with me and for the many ideas that started out on the whiteboard as mere scribbles,
only to mature up to the point that they are included in this thesis. Thank you Bart,
Claudio, István, Joachim, Ken, as well as the other members of the Ansymo research group,
for the stimulating discussions and the cross-fertilizations with your respective domains.
To Bentley, Maris, Sadaf, and Levi: thank you for hosting me when I visited MSDL at
McGill.

Thanks to the members of my jury: Juan de Lara, Manuel Wimmer, Serge Demeyer, and
Joachim Denil. Thank you for listening to this story and for your remarks and further
insights that helped this thesis to reach its current level. They are much appreciated.

I would also like to thank the Research Foundation - Flanders (FWO) for providing me
with the means to accomplish this work through my scholarship as Aspirant.

Thanks to my family and friends, who took my mind off things when I needed it and for
helping me wherever possible. Last but not least, thank you Lieselotte. Thank you for your
love and for understanding how important my work is to me.

Yentl Van Tendeloo
29 August 2018

ix





Abstract

The complexity of engineered systems is rapidly increasing, mainly due to their heterogene-
ity at run time and design time. At run time, software controls hardware components in a
feedback loop, the complete system has to interact (safely) with the environment, and often
multiple such systems are connected over a network and have to cooperate to achieve a task.
At design time, these run-time requirements often require multiple languages and tools to
be combined, in order to create a single big system. With the advent of Cyber-Physical
Systems and smart mechatronic systems of the Industry 4.0 initiative, engineers are facing
challenges of an unprecedented magnitude.

To successfully and efficiently tackle the complexity of engineered systems, modelling-
and simulation-based techniques are increasingly applied in the flow of the engineering
work. Model-Driven Engineering (MDE) regards models as first-class concepts: before
realizing the system, the various aspects of the system are modelled, allowing for analysis,
simulation, and verification. These models are created by domain experts, meaning that
these models are domain-specific. Within MDE, Multi-Paradigm Modelling (MPM) actively
promotes this specialization. MPM advocates explicitly modelling every relevant aspect
of the system, using the most appropriate formalism(s), at the most appropriate level(s) of
abstraction, while explicitly modelling the process.

Despite the proposed advantages of MPM, such as lowering the cognitive gap and repeatabil-
ity, current tools support only a subset of MPM. For example, they support domain-specific
formalisms, but not process model enactment. This is not surprising, as MPM relies on
several distinct research domains, all of which have to be integrated. To date, no foundation
for MPM exists, which is also usable for future applications in the context of MPM.

We address this problem in three steps, forming the three main contributions of this thesis,
related to the construction of a foundation for MPM. Within each contribution, several
orthogonal contributions were made in the domains considered, highlighting the relevance
and applicability of our MPM framework.

Our first contribution consists of creating a specification for a foundation for MPM, where
we explicitly list the requirements for MPM tool support. These requirements are based on
the definition of MPM and include both the explicitly stated requirements (e.g., support for
domain-specific formalisms) and those left more or less implicit (e.g., support for multiple
users). A minimal, though representative, power window case study is used to make these
requirements more concrete.

Our second contribution consists of implementing these requirements for a prototype tool,

xi



xii ABSTRACT

which we term the Modelverse. Given our assumption that MPM is useful for the modelling
of complex systems, we apply MPM to the construction of this prototype itself. This
serves as a case study for the application of MPM, highlighting its advantages and thereby
further building the case for MPM. An MPM tool consists of several components (e.g.,
conformance relation, model management operations), all of which we discuss in detail. For
each component, we motivate the use of MPM, consider the most appropriate formalism,
present the model, and evaluate the use of MPM. Most components proved to be easier and
less verbose to model, due to the higher level of abstraction: we could focus on the “what”,
instead of the “how”. Several components, however, proved exceptionally advantageous
to model explicitly and are listed next. Thanks to the application of MPM, we overcame
existing limitations, resulting in further contributions.

• By explicitly modelling the conformance relation, we can dynamically and simul-
taneously support multiple types of conformance. This addresses different non-
interoperable implementations of conformance found in today’s (meta-)modelling
tools, which hindered the use of model repositories.

• By explicitly modelling the physical type model, we can implement low-level model
operations in the linguistic dimension instead of the physical dimension. This ab-
stracts the physical implementation, allowing for different physical implementations
while maximally reusing model management operations.

• By explicitly modelling process model enactment semantics by mapping it to a
Statecharts model, the non-trivial implementation of concurrency can be omitted.
The process also becomes susceptible to analysis techniques that are applicable to
Statecharts.

• By explicitly modelling service orchestration, we obtain an explicitly modelled
interface for a black-box service. This combines the functionality of the black-box
component with the interface of a white-box component. We also gain analyzability
of the different activities and their interaction.

• By explicitly modelling the action language semantics through graph transformation
rules, we can automatically generate documentation and an interpreter. This makes
the interpreter trivially portable between different platforms, while guaranteeing the
exact same semantics.

• By explicitly modelling and simulating the performance, we can deterministically
and efficiently assess performance in a variety of (hypothetical) scenario’s.

Our third contribution consists of evaluating the presented prototype tool for its support
of MPM and further research on MPM. This shows the applicability of our prototype and
highlights the many potential directions for future work that our work enables, truly turning
it into a foundation for MPM. As for the use in an MPM context, we evaluate support
for each of the requirements originally mentioned in the power window case study. As
for further research, we consider three distinct dimensions, each focussing on a different
type of user that we envision will use the Modelverse. Our contribution in each dimension
required full support for MPM, as offered by our tool.

• Live modelling allows modellers to alter the design model during the execution of
that very same model, with modifications having a direct influence on the running



ABSTRACT xiii

execution. Current approaches to live modelling do exist, though are ad-hoc and
highly specific to the language under study. We propose a generic process, appli-
cable to many different types of modelling languages, which we evaluate for three
representative languages.

• Concrete syntax encompasses the different ways in which a model is presented
towards the user. Current approaches are mostly ad-hoc and have severe restrictions,
such as a strong coupling to the front-end and only support for visual languages. We
propose a generic process for the perceptualization and rendering of abstract syntax
models, which is agnostic to the rendering format.

• Debugging the Modelverse is complex due to the different interacting users, the
distinction between different services, and the use of several interacting programs.
Current approaches are not up to debugging several interacting programs simultane-
ously. Additionally, non-determinism, as introduced by the network and the other
shared resources, renders fault reproduction impossible. We propose to debug a
DEVS model instead of the actual code, thereby raising the level of abstraction and
gaining full control over time.

Given that all these extensions were supported by the Modelverse out-of-the-box, we
consider that it is usable for future research as well.





Nederlandstalige
Samenvatting

De complexiteit van door de mens ontwikkelde systemen stijgt snel, voornamelijk door de
heterogeniteit tijdens hun uitvoering en ontwikkeling. Tijdens de uitvoering controleert
de ontwikkelde software verschillende (teruggekoppelde) hardware componenten, moet
het volledige systeem (veilig) interageren met de omgeving, en vaak zijn meerdere zulke
systemen verbonden over een netwerk om zo coöperatief een taak te vervullen. Tijdens
de ontwikkeling impliceren die vereisten vaak de nood aan een combinatie van meerdere
talen en tools, voor het creëren van één enkel groot systeem. Sinds de doorbraak van
cyber-fysische systemen en slimme mechatronische systemen uit het Industry 4.0 initiatief,
staan ingenieurs voor uitdagingen van een niet eerder geziene grootte.

Om succesvol en efficient de complexiteit van zulke systemen aan te pakken, worden
modelleer- en simulatie-gebaseerde technieken steeds vaker gebruikt tijdens de ontwikkel-
ing. Model-Driven Engineering (MDE) beschouwt modellen als basisconcepten: alvorens
het eigenlijke systeem te realiseren worden de verschillende aspecten van het systeem
gemodelleerd, wat analyse, simulatie en verificatie mogelijk maakt. Deze modellen worden
ontwikkeld door domein-experts, wat betekent dat deze modellen domein-specifiek zijn.
Binnen MDE is Multi-Paradigm Modelling (MPM) een specializatie die dit principe actief
promoot. MPM pleit voor het expliciet modelleren van elk relevant aspect van het systeem,
gebruik makende van de meest geschikte formalismen, op de meest geschikte niveaus van
abstractie, terwijl eveneens het proces expliciet gemodelleerd wordt.

Ondanks de verscheidene voordelen van MPM, zoals het verkleinen van de cognitieve
kloof tussen het probleem en de oplossing, ondersteunen bestaande tools slechts een deel
van MPM. Er bestaan bijvoorbeeld tools die domein-specifieke formalismen ondersteunen,
maar geen ondersteuning bieden voor het process. Dit is niet verrassend, daar MPM steunt
op verschillende orthogonale onderzoeksdomeinen, dewelke allemaal geı̈ntegreerd dienen
te worden. Tot op heden bestaat er geen onderbouw voor MPM, dewelke tevens gebruikt
kan worden voor toekomstige toepassingen binnen de context van MPM.

We behandelen dit probleem in drie fasen, die eveneens de drie hoofdbijdragen vormen
van deze thesis. Binnen elke bijdrage werden verschillende orthogonale bijdragen gemaakt
binnen het beschouwde domein, wat verder de relevantie en toepasbaarheid van onze aanpak
onderstreept.

Onze eerste bijdrage bestaat uit het definiëren van een specificatie voor een onderbouw

xv



xvi NEDERLANDSTALIGE SAMENVATTING

voor MPM, dewelke expliciet de vereisten voor MPM oplijst. Deze vereisten zijn gebaseerd
op de definitie van MPM en includeren zowel de expliciet vermelde vereisten (bv. onders-
teuning voor domein-specifieke formalismen) als ook de impliciet gelaten vereisten (bv.,
ondersteuning voor meerdere gebruikers). Een minimaal doch representatief autotechnolo-
gisch voorbeeld van een automatisch ruitbedieningssysteem is gebruikt om deze vereisten
te concretiseren.

Onze tweede bijdrage bestaat uit het implementeren van deze vereisten in een prototype,
hetwelk we Modelverse noemen. Gegeven onze assumptie dat MPM een zinvolle techniek
is voor het modelleren van complexe systemen, passen we MPM toe voor de constructie
van dit prototype zelf. Dit dient eveneens als een gevalsstudie voor de toepasbaarheid
van MPM, wat het mogelijk maakt de voordelen beter in de verf te zetten en verdere
precedenten te scheppen. Een MPM tool bestaat uit verschillende componenten, zoals
model conformiteit en operaties voor model beheer, dewelke allemaal in detail besproken
zullen worden. Voor elke component motiveren we het gebruik van MPM, daarbij bepalende
wat het meest geschikte formalisme is, gevolgd door een uitvoerige discussie van het model
en een evaluatie van het gebruik van MPM. De meerderheid hiervan bleek makkelijker
en compacter om te modelleren vanwege het hogere niveau van abstractie: we konden
focussen op het “wat”, in plaats van op het “hoe”.

Bovendien bleken verschillende componenten exceptioneel voordelig om expliciet te mod-
elleren. Dankzij de toepassing van MPM werd het namelijk mogelijk om bestaande
limitaties weg te werken, wat de basis was voor verdere bijdragen.

• Door het expliciet modelleren van de conformiteit tussen modellen, bieden we
dynamische en simultane ondersteuning voor meerdere types van conformiteit. Dit
unificeert de verschillende, niet-interoperabele conformiteits implementaties, die
gevonden worden in hedendaagse (meta-)modelleer tools, wat een beperkende factor
is voor model uitwisseling.

• Door het expliciet modelleren van het fysieke type model, kunnen model operaties
op een laag niveau in de linguistische dimensie geı̈mplementeerd worden, in plaats
van in de fysieke dimensie. Dit abstraheert de fysieke implementatie en maakt het
mogelijk om verschillende zulke implementaties te ondersteunen, terwijl model
beheer operaties maximaal hergebruikt kunnen worden.

• Door het expliciet modelleren van de uitvoeringssemantiek van een proces model
via een vertaling naar Statecharts, kan de niet-triviale implementatie van concurrente
processen vermeden worden. Het proces wordt tevens vatbaar voor bestaande analyse
technieken van Statecharts.

• Door het expliciet modelleren van de orchestratie van verschillende diensten, wordt
het mogelijk om expliciet gemodelleerde interfaces aan te bieden voor arbitraire
black-box diensten. Dit combineert de functionaliteit van zulke black-box compo-
nenten met de interface van white-box componenten. Daarenboven verkrijgen we
analyseerbaarheid van de verschillende activiteiten en hun interactie.

• Door het expliciet modelleren van de actietaal semantiek door het gebruik van
graaf transformatie regels, wordt het automatisch genereren van documentatie en
interpreteerder mogelijk. Deze wordt bijgevolg triviaal over te dragen naar andere
platformen, terwijl de exacte semantiek gegarandeerd behouden blijft.



NEDERLANDSTALIGE SAMENVATTING xvii

• Door het expliciet modelleren en simuleren van de efficientie, kunnen we op determin-
istische en efficiente wijze de performantie inschatten in een resem (hypothetische)
scenario’s.

Onze derde bijdrage bestaat uit het evaluaren van het eerder vermelde prototype naar zijn
ondersteuning voor MPM en toekomstig onderzoek in MPM. Dit toont de toepasbaarheid
van het prototype aan en onderstreept de vele potentiële richtingen voor verder onderzoek,
die mogelijk gemaakt worden door deze onderbouw. Voor het gebruik binnen een MPM
context evalueren we de ondersteuning voor elk van de voornoemde vereisten binnen
de gevalsstudie van het automatisch ruitbedieningssysteem. Voor het gebruik binnen
toekomstig onderzoek beschouwen we drie verschillende dimensies, die elk focussen op
een ander type gebruiker van onze onderbouw. Onze bijdrage in elke dimensie vereist
steeds volledige ondersteuning voor MPM.

• Live modelleren staat modelleerders toe om een ontwerpmodel onmiddellijk te
wijzigen tijdens de uitvoering van dat eigenste model, waarbij de wijzigingen een
onmiddellijke impact hebben op de reeds lopende uitvoering. Bestaande technieken
voor live modelleren zijn vaak ad hoc en hoogst specifiek voor de beschouwde taal.
We stellen een generiek proces voor dat toegepast wordt voor drie verschillende
representatieve talen.

• Concrete syntax omvat de verschillende manieren waarop een model kan gepresen-
teerd worden jegens gebruikers. Bestaande technieken zijn ook nu weer ad hoc of
hebben significante restricties, zoals een sterke koppeling met de gebruikersinterface
of het enkel aanbieden van ondersteuning voor visuele talen. We stellen een generiek
process voor voor het perceptualizeren en uit te tekenen van een abstract syntax
model, agnostisch van het gekozen medium.

• Het debuggen van de Modelverse is complex vanwege de potentiële interactie tussen
gebruikers, het onderscheid tussen verschillende diensten, en het gebruik van verschil-
lende interagerende programma’s. Bestaande technieken zijn ontoereikend voor het
debuggen van zulke systemen. Bovendien is de uitvoering vaak niet-deterministisch
vanwege interferentie (bv., netwerkcommunicatie of gedeelde platformen), wat foutre-
productie bemoeilijkt. We stellen een generieke techniek voor voor het debuggen van
een DEVS model in plaats van de eigenlijke code, waardoor het niveau van abstractie
verhoogd kan worden en we volledige controle krijgen over de tijd tijdens executie.

Gegeven dat deze drie uitbreidingen ondersteund werden door de Modelverse zonder ingrijp-
ende wijzigingen, concluderen we dat deze eveneens bruikbaar is voor verder onderzoek
binnen het domein van MPM.





Publications

The following peer-reviewed publications that I co-authored were included (partially) in
this thesis:

1. VAN TENDELOO, Y., AND VANGHELUWE, H. The modular architecture of the
Python(P)DEVS simulation kernel. In Proceedings of the 2014 Spring Simulation
Multiconference - TMS/DEVS (2014), pp. 387–392

Yentl and Hans came up with the ideas, Yentl implemented the approach and wrote
the paper, Hans reviewed the paper. Briefly summarized in Section 5.12.2.

2. VAN TENDELOO, Y., AND VANGHELUWE, H. Activity in PythonPDEVS. In Pro-
ceedings of ACTIMS (2014)

Yentl and Hans came up with the ideas, Yentl implemented the approach and wrote
the paper, Hans reviewed the paper. Briefly summarized in Section 5.7.

3. VAN MIERLO, S., VAN TENDELOO, Y., BARROCA, B., MUSTAFIZ, S., AND VAN-
GHELUWE, H. Explicit modelling of a Paralell DEVS experimentation environment.
In Proceedings of the 2015 Spring Simulation Multiconference - TMS/DEVS (2015),
pp. 860–867

Simon and Yentl came up with the ideas, implemented the approach, and wrote
the paper. Bruno, Sadaf, and Hans reviewed the paper. Partially incorporated in
Section 6.4.2.

4. VAN TENDELOO, Y., AND VANGHELUWE, H. PythonPDEVS: a distributed Parallel
DEVS simulator. In Proceedings of the 2015 Spring Simulation Multiconference -
TMS/DEVS (2015), pp. 844–851

Yentl and Hans came up with the ideas, Yentl implemented the approach and wrote
the paper, Hans reviewed the paper. Briefly summarized in Section 5.12.2.

5. VAN TENDELOO, Y. Foundations of a multi-paradigm modelling tool. In MoDELS
ACM Student Research Competition (2015), pp. 52–57

Yentl came up with the ideas and wrote the paper. Partially incorporated in Chapter 4.

6. CARDOEN, B., MANHAEVE, S., TUIJN, T., VAN TENDELOO, Y., VANMECHELEN,
K., VANGHELUWE, H., AND BROECKHOVE, J. Performance analysis of a PDEVS
simulator supporting multiple synchronization protocols. In Proceedings of the 2016
Symposium on Theory of Modeling and Simulation - TMS/DEVS (2016), pp. 614–621

xix



xx PUBLICATIONS

Yentl, Kurt, Hans, and Jan came up with the ideas; Ben, Stijn, and Tim implemented
the approach and elaborated the ideas; Yentl, Ben, Stijn, and Tim wrote the paper;
Yentl, Kurt, and Jan reviewed the paper. Briefly summarized in Section 5.7.

7. VAN TENDELOO, Y., AND VANGHELUWE, H. An overview of PythonPDEVS. In
JDF 2016 – Les Journées DEVS Francophones – Théorie et Applications (2016), pp.
59–66

Yentl came up with the ideas and implemented the approach and wrote the paper,
Hans reviewed the paper. Briefly summarized in Section 5.12.2.

8. VAN MIERLO, S., VAN TENDELOO, Y., MEYERS, B., EXELMANS, J., AND
VANGHELUWE, H. SCCD: SCXML extended with Class Diagrams. In Proceedings
of the Workshop on Engineering Interactive Systems with SCXML (2016), pp. 2:1–2:6

Hans came up with the ideas; Joeri, Simon, and Yentl implemented the approach;
Simon and Bart wrote the paper; Yentl and Hans reviewed the paper. Partially
incorporated in Section 2.4.5.

9. VAN MIERLO, S., VAN TENDELOO, Y., MEYERS, B., AND VANGHELUWE H.
Domain-Specific Modelling for Human-Computer Interaction. Springer, 2017, pp.
435–463

Bart came up with the ideas; Yentl, Simon, and Bart implemented the examples and
wrote the paper; Hans reviewed the paper. Incorporated in Section 2.1.

10. VAN MIERLO, S., VAN TENDELOO, Y., AND VANGHELUWE, H. Debugging
Parallel DEVS. SIMULATION 93, 4 (2017), 285–306

Simon and Yentl came up with the ideas, implemented the approach, and wrote the
paper; Hans reviewed the paper. Partially incorporated in Section 6.4.2.

11. VAN TENDELOO, Y., AND VANGHELUWE, H. An evaluation of DEVS simulation
tools. SIMULATION 93, 2 (2017), 103–121

Yentl and Hans came up with the ideas; Yentl updated the evaluation criteria, imple-
mented the examples, and wrote the paper; Hans reviewed the paper. Incorporated
in Section 5.12.2.

12. CARDOEN, B., MANHAEVE, S., VAN TENDELOO, Y., AND BROECKHOVE, J. A
PDEVS simulator supporting multiple synchronization protocols: implementation
and performance analysis. SIMULATION 93 (2017)

Yentl and Jan came up with the ideas; Ben and Stijn implemented the approach and
elaborated the ideas; Yentl, Ben, and Stijn wrote the paper; Yentl and Jan reviewed
the paper. Briefly summarized in Section 5.7.

13. VAN TENDELOO, Y. VAN MIERLO, S., AND VANGHELUWE, H. Time- and space-
conscious omniscient debugging of Parallel DEVS. In Proceedings of the 2017 Spring
Simulation Multiconference - TMS/DEVS (2017), pp. 1001–1012

Yentl came up with the ideas and implemented the approach; Yentl and Simon wrote
the paper; Hans reviewed the paper. Partially incorporated in Section 6.4.2.



PUBLICATIONS xxi

14. VAN TENDELOO, Y., AND VANGHELUWE, H. The Modelverse: a tool for multi-
paradigm modelling and simulation. In Proceedings of the 2017 Winter Simulation
Conference (2017), pp. 944–955

Yentl came up with the ideas and implemented the approach and wrote the paper,
Hans reviewed the paper. Partially incorporated in Section 6.1.

15. VAN TENDELOO, Y., AND VANGHELUWE, H. Classic DEVS modelling and simula-
tion. In Proceedings of the 2017 Winter Simulation Conference (2017), pp. 644–656

Yentl came up with the ideas and implemented the approach and wrote the paper,
Hans reviewed the paper. Partially incorporated in Section 2.4.6.

16. VAN TENDELOO, Y., AND VANGHELUWE, H. Increasing performance of a DEVS
simulator by means of computational resource usage “activity” models. SIMULA-
TION 93, 12 (2017), 1045–1061

Yentl came up with the ideas and implemented the approach and wrote the paper,
Hans reviewed the paper. Briefly summarized in Section 5.7.

17. VAN TENDELOO, Y., AND VANGHELUWE, H. Explicitly modelling the type/instance
relation. In Proceedings of MODELS 2017 Satellite Event (2017), pp. 392–398

Yentl came up with the ideas and implemented the approach and wrote the paper,
Hans reviewed the paper. Incorporated in Section 5.6.

18. VAN TENDELOO, Y., VAN MIERLO, S., MEYERS, B., AND VANGHELUWE, H.
Concrete syntax: a multi-paradigm modelling approach. In Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering (SLE)
(2017), pp. 182–193

Yentl and Simon came up with the ideas; Yentl, Simon, and Bart elaborated on the
idea; Yentl implemented the approach; Yentl and Simon wrote the paper; Bart and
Hans reviewed the paper. Incorporated in Section 6.3.

19. VAN TENDELOO, Y., AND VANGHELUWE, H. Extending the DEVS formalism with
initialization information. ArXiv e-prints (2018)

Yentl and Hans came up with the ideas; Yentl implemented the approach and wrote
the paper; Hans reviewed the paper. Partially incorporated in Section 2.4.6.

20. VAN MIERLO, S., VAN TENDELOO, Y., DÁVID, I., MEYERS, B., GEBREMICHAEL,
A., AND VANGHELUWE, H. A multi-paradigm approach for modelling service
interactions in model-driven engineering processes. In Proceedings of the 2018
Spring Simulation Multiconference - Mod4Sim (2018), pp. 565–576

Bart and Hans came up with the ideas; Yentl and Addis elaborated on the idea; Addis
and Yentl implemented the approach; Simon, Yentl, and István wrote the paper; Hans
and Addis reviewed the paper. Incorporated in Section 5.8 and Section 5.9.

21. VAN TENDELOO, Y., AND VANGHELUWE, H. Introduction to Parallel DEVS mod-
elling and simulation. In Proceedings of the 2018 Spring Simulation Multiconference
- Mod4Sim (2018), pp. 613–624



xxii PUBLICATIONS

Yentl and Hans came up with the ideas; Yentl implemented the approach and wrote
the paper; Hans reviewed the paper. Partially incorporated in Section 2.4.6.

22. VAN TENDELOO, Y., AND VANGHELUWE, H. Unifying Screen- and Modelsharing.
In Proceedings of the 2018 WETICE Conference (2018), pp. 127–132

Yentl came up with the ideas, implemented the approach, and wrote the paper; Hans
reviewed the paper. Partially incorporated in Section 6.3.

23. VAN TENDELOO, Y., AND VANGHELUWE, H. DEVS Modelling and Simulation of
a Multi-Paradigm Modelling Tool. In Proceedings of the 2018 Summer Simulation
Multiconference - SCSC (2018), pp. 27–38

Yentl came up with the ideas, implemented the approach, and wrote the paper; Hans
reviewed the paper. Incorporated in Section 6.4 and Section 5.12.

The following peer-reviewed publications that I co-authored were not included in this
thesis:

1. VAN TENDELOO, Y., AND VANGHELUWE, H. Logisim to DEVS translation. In
Proceedings of the 2013 IEEE/ACM 17th International Symposium on Distributed
Simulation and Real Time Applications (2013), pp. 13–20

Hans came up with the ideas; Yentl implemented the approach; Yentl and Hans wrote
the paper.

2. VAN TENDELOO, Y., AND VANGHELUWE, H. Teaching the fundamentals of the
modelling of cyber-physical systems. In Proceedings of the 2016 Spring Simulation
Multiconference - TMS/DEVS (2016), pp. 646–653

Hans and Yentl came up with the ideas and wrote the paper.

3. GOMES, C., VAN TENDELOO, Y., DENIL, J., DE MEULENAERE, P., AND VANGHE-
LUWE, H. Hybrid system modelling and simulation with Dirac deltas. In Proceedings
of the 2017 Spring Simulation Multiconference - TMS/DEVS (2017), pp. 1049–1060

Claudio came up with the idea; Yentl, Joachim, and Claudio elaborated on the idea;
Claudio implemented the approach and wrote the paper; Yentl, Joachim, Paul, and
Hans reviewed the paper.

4. DÁVID, I., MEYERS, B., VANHERPEN, K. VAN TENDELOO, Y., BERX, K., AND
VANGHELUWE, H. Modeling and enactment support for managing inconsistencies
in heterogeneous systems engineering processes. In Proceedings of MODELS 2017
Satellite Event (2017), pp. 145–154

István, Bart, Ken, and Yentl came up with the idea; István, Ken, Bart, and Kristof
elaborated on the ideas; István wrote the paper; Bart, Ken, Yentl, Kristof, and Hans
reviewed the paper.

5. DÁVID, I., VAN TENDELOO, Y., AND VANGHELUWE, H. Translating Engineering
Workflow Models to DEVS for Performance Evaluation. In Proceedings of the 2018
Winter Simulation Conference (2018) (accepted)

István, Yentl, and Hans came up with the idea; István and Yentl elaborated on the
ideas, implemented the approach, and wrote the paper; Hans reviewed the paper.



PUBLICATIONS xxiii

6. VAN TENDELOO, Y., AND VANGHELUWE, H. Classic DEVS Modelling and Simu-
lation. In Proceedings of the 2018 Winter Simulation Conference (2018) (accepted)

Updated version of our previous paper at the 2017 Winter Simulation Conference.





Overview of Activities

During my PhD, I participated in a number of scientific activities that were (to some extent)
related to my research. A (non-exhaustive) list is included here.

Teaching
• Lab Sessions “Modelling of Software-Intensive Systems” course at University of

Antwerp (2014 - 2018).

• Several Lectures “Modelling of Software-Intensive Systems” course at University of
Antwerp (2014 - 2018).

• Several Lectures “Computer-Systems and Architecture” course at University of
Antwerp (2014 - 2018).

• Lab Sessions of the 5th International Summer School on Domain-Specific Modelling
(DSM-TP 2015).

• Lab Sessions of the 6th International Summer School on Domain-Specific Modelling
(DSM-TP 2016).

• Tutorial “DEVS Modelling and Simulation” at SpringSim’16, 3 April 2016.

• Tutorial “Introduction to Parallel DEVS Modeling and Simulation” at SpringSim’17,
23 April 2017.

• Tutorial “Classic DEVS Modelling and Simulation” at WinterSim’17, 6 December
2017.

• Tutorial “Introduction to Classic DEVS Modelling and Simulation” at SpringSim’18,
15 April 2018.

• Tutorial “Practical Classic DEVS Modelling and Simulation” at SpringSim’18, 15
April 2018.

• Tutorial “Introduction to Classic DEVS” at SummerSim’18, 9 July 2018.

• Tutorial “An Introduction to Statecharts Modeling and Simulation” at SummerSim’18,
9 July 2018.

xxv



xxvi ACTIVITIES

Participation in Scientific Activities

• International Symposium on Distributed Simulation and Real Time Applications
2013 (DS-RT’13) (Delft, the Netherlands; 30 October - 1 November 2013)

• Domain Specific Modelling - Theory and Practice 2014 (DSM-TP’14) (Antwerp,
Belgium; 25-29 August 2014)

• Spring Simulation Multi-Conference 2015 (SpringSim’15) (Alexandria, VA, USA;
12 - 15 April 2015)

• Domain Specific Modelling - Theory and Practice 2015 (DSM-TP’15) (Antwerp,
Belgium; 24-28 August 2015)

• International Conference on Model Driven Engineering Languages and Systems
2015 (MoDELS’15) (Ottawa, Canada; 27 September - 2 October 2015)

• Spring Simulation Multi-Conference 2016 (SpringSim’16) (Pasadena, CA, USA; 3 -
6 April 2016)

• Workshop Les Journées DEVS francophones: Théorie et Applications (JDF’16)
(Cargèse, France; 11 - 15 April 2016)

• CAMPaM Workshop 2016 (Bellairs, Barbados; 29 April - 6 May 2016)

• Spring Simulation Multi-Conference 2017 (SpringSim’17) (Virginia Beach, VA,
USA; 23 - 26 April 2017)

• International Conference on Model Driven Engineering Languages and Systems 2017
(MoDELS’17) (Austin, TX, USA; 17 - 22 September 2017)

• International Conference on Software Language Engineering 2017 (SLE’17) (Van-
couver, Canada; 23 - 24 October 2017)

• Winter Simulation Conference 2017 (WSC’17) (Las Vegas, NV, USA; 3 - 6 December
2017)

• Master Class: From Products to Product Families: Leverage your Product Portfolio
(Antwerp, Belgium; 1 February 2018)

• Spring Simulation Multi-Conference 2018 (SpringSim’18) (Baltimore, MD, USA;
15 - 18 April 2018)

• International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises 2018 (WETICE 2018) (Paris, France; 27 - 29 June 2018)

• Summer Simulation Multi-Conference 2018 (SummerSim’18) (Bordeaux, France; 9
- 12 July 2018)



ACTIVITIES xxvii

Reviewing
• Workshop on Activity in Modelling and Simulation (ACTIMS)

• Spring Simulation Multi-Conference (SpringSim)

• Winter Simulation Multi-Conference (WSC)

• SIMULATION: Transactions of the Society for Modeling Simulation International
(SIMULATION)

• ACM Transaction on Modeling and Computer Simulation (TOMACS)

• Computer Languages, Systems and Structures (COMLAN)

• The Handbook of Formal Methods in Human-Computer Interaction (FoMHCI)

• Simulation Modelling Practice and Theory (SimPaT)





List of Figures

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Abstract syntax definition for the nuclear power plant domain (some sub-

classes omitted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Concrete syntax definition for the nuclear power plant domain (excerpt) . 13
2.4 Screenshot of an example nuclear power plant instance . . . . . . . . . . 14
2.5 Statechart equivalent to the behaviour shown in Figure 2.4 . . . . . . . . 16
2.6 Top-level transformation schedule . . . . . . . . . . . . . . . . . . . . . 18
2.7 Transformation schedule for valves . . . . . . . . . . . . . . . . . . . . . 18
2.8 Example transformation rule for translational semantics . . . . . . . . . . 18
2.9 Example transformation rule for operational semantics . . . . . . . . . . 19
2.10 Example FSA of a home security alarm system. . . . . . . . . . . . . . . 20
2.11 Abstract Syntax of Finite State Automata. Runtime-only concepts are

shown in bold. The association “Transition” has additional attributes de-
fined on it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Abstract Syntax of Discrete Time Causal Block Diagrams. Runtime-only
concepts are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Example DTCBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.14 Abstract Syntax of Continuous Time Causal Block Diagrams. . . . . . . . 23
2.15 Example CTCBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 Expand rule for an integrator block. . . . . . . . . . . . . . . . . . . . . 24
2.17 Optimize rule for an invertor block. . . . . . . . . . . . . . . . . . . . . 24
2.18 Example Petri Net with reachability graph. . . . . . . . . . . . . . . . . . 25
2.19 Bouncing ball example in SCCD (abstracted). . . . . . . . . . . . . . . . 27
2.20 Simulation trace with hypothetical negative simulation time (grayed out). 32
2.21 Various options for shifting the police model. . . . . . . . . . . . . . . . 32
2.22 Example FTG+PM for safety analysis of a simplified power window. . . . 33

3.1 Meaning of a simple Petri Nets metamodel. U represents all possible
instances, including those violating the structure; TS represents all instances
that conform structurally, but not necessarily to all the constraints; TS∧C
represents all instances that conform both structurally and fulfil all constraints. 36

3.2 Four-layered architecture as popularized by the OMG. . . . . . . . . . . 37
3.3 Three different classification dimensions: ontological, linguistcal, and

physical. All dimensions are orthogonal to each other. . . . . . . . . . . . 38
3.4 Multi-level modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xxix



xxx LIST OF FIGURES

4.1 Three types of users in relation to the meta-hierarchy. . . . . . . . . . . . 47
4.2 The relation between the model and the system. [337] . . . . . . . . . . . 48

5.1 Overview of all components of the Modelverse, together with the section
in which their model is described. . . . . . . . . . . . . . . . . . . . . . 68

5.2 SCCD model of the GUI (excerpt). . . . . . . . . . . . . . . . . . . . . . 71
5.3 Screenshot of the GUI with a loaded CBD model. . . . . . . . . . . . . . 72
5.4 Abstract version of the client wrapper Statechart. . . . . . . . . . . . . . 75
5.5 Network protocol SCCD model at server side (abstracted). . . . . . . . . 78
5.6 Network protocol SCCD model at client side (abstracted). . . . . . . . . 79
5.7 Initial bootstrap FTG including metadata and access control (excerpt).

Instance-of links are parameterized with a conformance semantics (e.g.,
conformance mv) and type mapping model (e.g., 0). . . . . . . . . . . . . 87

5.8 First example language: use of containment links. . . . . . . . . . . . . . 91
5.9 Second example language: use of node multiplicities. . . . . . . . . . . . 92
5.10 Third example language: use of multiple inheritance. . . . . . . . . . . . 92
5.11 AToMPM’s MAS

3 , taken directly from AToMPM itself. . . . . . . . . . . . 94
5.12 Modelverse’s MAS

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.13 Overview of languages, models, and relations in the Modelverse. . . . . . 97
5.14 An algorithm spanning multiple layers in the linguistic dimension, violating

strict metamodelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.15 LTM⊥, allowing for any element to connect to any other element. . . . . 102
5.16 LTM⊥ added in the linguistic dimension, which is identical to the one in

the physical dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.17 Different modelling hierarchies for the model my PN, as seen through two

different linguistic views. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.18 Changing the physical metamodel with something else, as long as there

is still a mapping to LTM⊥. SQL metamodel not expanded due to space
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.19 Two different ontological views on the same model. The elements accessed
by the algorithm are shown in light blue. Only conformance⊥ complies
with strict metamodelling. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.20 Overview of the complete procedure: (1) reinterpret the model as instance
of LTM⊥, (2) execute the algorithm on the graph representation, (3) rein-
terpret the model again using the initial metamodel. All steps happen on
the background and the user only sees the composite operation. . . . . . . 107

5.21 Snapshot of air traffic simulation load distribution at start of simulation. . 111
5.22 Snapshot of air traffic simulation load distribution during simulation. . . . 111
5.23 Snapshot of air traffic simulation load distribution after load balancing. . . 111
5.24 Activity as an optional extension to both the model and simulator. . . . . 112
5.25 Simplified city lay-out model. . . . . . . . . . . . . . . . . . . . . . . . 113
5.26 Execution time results for the city layout model. . . . . . . . . . . . . . . 113
5.27 Results of using the polymorphic scheduler data structure, normalized for

the polymorphic scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.28 Results of using the polymorphic scheduler data structure with different

phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.29 Performance of conservative and optimistic synchronization for the modi-

fied PHold model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



LIST OF FIGURES xxxi

5.30 Process model of the example. . . . . . . . . . . . . . . . . . . . . . . . 120
5.31 Automatic activity: protocol implemented to communicate with an external

service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.32 Problematic process model with a naive mapping to SCCD constructs. . . 126
5.33 Optimize rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.34 Orchestrator rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.35 Activity rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.36 Fork rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.37 Join rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.38 Decision rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.39 Power window FTG+PM. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.40 Power window FTG+PM from Figure 5.39 mapped to SCCD. . . . . . . 129
5.41 Abstract syntax of the Action Language. Associations whose name are

within square brackets indicate optional associations. All associations have
a maximum cardinality of 1. . . . . . . . . . . . . . . . . . . . . . . . . 133

5.42 Abstract syntax of a Fibonacci algorithm written in the Action Language. 134
5.43 Graph transformation rule for the If construct to switch to the else block. . 136
5.44 Example optimization rule for the Action Language: constant folding. . . 138
5.45 Task manager SCCD model (abstracted). . . . . . . . . . . . . . . . . . . 140
5.46 “Traffic” model, shown for 2 segments. . . . . . . . . . . . . . . . . . . 146
5.47 Benchmark results for the “Traffic” benchmark. The left figure uses a

logarithmic scale, whereas the right figure is zoomed in on the fastest tools
and uses a linear scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.48 Distribution of time taken for rule generation in the MvK. . . . . . . . . . 149
5.49 Influence of MvI - MvK latency. . . . . . . . . . . . . . . . . . . . . . . 151
5.50 Influence of MvK - MvS latency. . . . . . . . . . . . . . . . . . . . . . . 151
5.51 Actual execution results. . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.52 Varying MvI - MvK latency. . . . . . . . . . . . . . . . . . . . . . . . . 153
5.53 Varying MvK - MvS latency. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1 FTG+PM of our example: the development and verification of a simplified
power window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Meta-modelling hierarchy of the example. . . . . . . . . . . . . . . . . . 159
6.3 Plant metamodel, describing allowed constructs for a plant model. . . . . 159
6.4 Environment model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.5 Safety query model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.6 Control model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.7 Plant model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.8 Architecture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.9 Rule for transforming the environment model to an encapsulated Petri Net. 160
6.10 Combined Petri Net, automatically generated from the DSL models. . . . 161
6.11 State of the game before and after decreasing the jump height parameter. . 166
6.12 Example FSA of a home security alarm system. . . . . . . . . . . . . . . 169
6.13 Example DTCBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.14 Example CTCBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.15 Diagrammatic overview of live programming. Full lines represent opera-

tions, dotted lines represent typing relations. . . . . . . . . . . . . . . . . 172



xxxii LIST OF FIGURES

6.16 The partial runtime model of the example CTCBD, as an instance of the
DTCBD language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.17 The full runtime models of the examples. . . . . . . . . . . . . . . . . . 174
6.18 Sanitization in FSAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.19 Sanitization in DTCBDs. . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.20 New design model for CTCBDs. . . . . . . . . . . . . . . . . . . . . . . 179
6.21 Overview of our approach applied to an FSA mode, including traceability

links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.22 Overview of our approach applied to a DTCBD model, including traceabil-

ity links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.23 Overview of our approach applied to a CTCBD model. Only some interest-

ing traceability links are shown. . . . . . . . . . . . . . . . . . . . . . . 181
6.24 Overview of our approach, as an FTG+PM model. . . . . . . . . . . . . . 181
6.25 Live modelling for FSAs, before change. . . . . . . . . . . . . . . . . . . 184
6.26 Live modelling for FSAs, after removing current state and setting new

initial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.27 Live modelling for DTCBDs, before change. . . . . . . . . . . . . . . . . 185
6.28 Live modelling for DTCBDs, after adding and connecting the multiplication

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.29 Implementation of live modelling for CTCBDs. . . . . . . . . . . . . . . 185
6.30 Simulation trace, where the constant “g” is changed at around time 63. . . 186
6.31 Plotted trace of the CBD model, with k = 1, m = 1kg , y0 = 20cm ,

v0 = 1 cm
s , and g = 10 cm

s2 . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.32 Graphical representation of the trace in Figure 6.31. . . . . . . . . . . . . 191
6.33 Using different set of icons. . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.34 Circle lay-out of the same model. . . . . . . . . . . . . . . . . . . . . . . 192
6.35 Alternative representation using a more complex mapping. . . . . . . . . 192
6.36 Overview of the approach. . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.37 Overview of the approach with an example for CBDs. . . . . . . . . . . . 194
6.38 MMrender for graphical visualization. . . . . . . . . . . . . . . . . . . . 194
6.39 Example rule for CBD perceptualization. . . . . . . . . . . . . . . . . . 195
6.40 Approach with multiple GUI front-ends. . . . . . . . . . . . . . . . . . . 198
6.41 Approach with multiple MMRender models. . . . . . . . . . . . . . . . . . 199
6.42 Approach with multiple mappers to the same MMRender. The same tool is

used for both models, though different instances. . . . . . . . . . . . . . 199
6.43 Concrete Syntax definition to automatically generate the perceptualization

and comprehension operations. . . . . . . . . . . . . . . . . . . . . . . . 203
6.44 Simulation time and steps. . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.45 PythonPDEVS Statechart. . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.46 PythonPDEVS Statechart augmented with debugging functionality. . . . . 210
6.47 Overhead of omniscient debugging in forward simulation. . . . . . . . . 211
6.48 Overview of periodic state saving approach. Green states (light) are stored,

red (dark) states are not. Yellow lines indicate a point at which a snapshot
is made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.49 Overhead of omniscient debugging in function of state size (logaritmic scale).213
6.50 Jump latency for copy and periodic state saving. . . . . . . . . . . . . . . 213
6.51 Memory use of copy state saving. . . . . . . . . . . . . . . . . . . . . . 214
6.52 Memory use of periodic state saving. . . . . . . . . . . . . . . . . . . . . 214



LIST OF FIGURES xxxiii

B.1 If construct needs to evaluate the condition. . . . . . . . . . . . . . . . . 236
B.2 If construct needs to evaluate the then branch. . . . . . . . . . . . . . . . 236
B.3 If construct needs to evaluate the else branch, and there is one. . . . . . . 237
B.4 If construct needs to evaluate the else branch, but there is none. . . . . . . 237
B.5 While construct needs to evaluate the condition. . . . . . . . . . . . . . . 238
B.6 While construct must loop. . . . . . . . . . . . . . . . . . . . . . . . . . 238
B.7 While construct must terminate. . . . . . . . . . . . . . . . . . . . . . . 239
B.8 Break construct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
B.9 Continue construct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
B.10 Access construct must fetch the referred value. . . . . . . . . . . . . . . . 241
B.11 Access construct needs to access the value. . . . . . . . . . . . . . . . . . 241
B.12 Resolve construct resolves a non-global element. . . . . . . . . . . . . . 242
B.13 Resolve construct resolves a global element. . . . . . . . . . . . . . . . . 242
B.14 Assign construct reads out the symbol to assign to. . . . . . . . . . . . . . 243
B.15 Assign construct reads out the value to assign. . . . . . . . . . . . . . . . 243
B.16 Assign construct performs the actual assigment. . . . . . . . . . . . . . . 244
B.17 Call construct resolves function with no parameters. . . . . . . . . . . . . 244
B.18 Call construct resolves function with parameters. . . . . . . . . . . . . . 245
B.19 Call construct invokes with no parameters. . . . . . . . . . . . . . . . . . 245
B.20 Call construct invokes with parameters. . . . . . . . . . . . . . . . . . . 246
B.21 Call construct evaluates first of multiple parameters. . . . . . . . . . . . . 246
B.22 Call construct evaluates first and only parameter. . . . . . . . . . . . . . 247
B.23 Call construct evaluates last of multiple parameters. . . . . . . . . . . . . 247
B.24 Call construct evaluates next of multiple parameters. . . . . . . . . . . . 248
B.25 Return construct returns with no returnvalue. . . . . . . . . . . . . . . . . 249
B.26 Return construct evaluates the returnvalue. . . . . . . . . . . . . . . . . . 250
B.27 Return construct returns the evaluated returnvalue. . . . . . . . . . . . . . 250
B.28 Constant construct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.29 Declare construct for a local variable. . . . . . . . . . . . . . . . . . . . 251
B.30 Global construct for a global variable. . . . . . . . . . . . . . . . . . . . 252
B.31 Input construct for fetching external input. . . . . . . . . . . . . . . . . . 253
B.32 Output construct must evaluate output value. . . . . . . . . . . . . . . . . 253
B.33 Output construct must output the evaluated value. . . . . . . . . . . . . . 254
B.34 Instruction has finished execution and has a next link. . . . . . . . . . . . 254
B.35 Instruction has finished execution but has no next link. . . . . . . . . . . 255





List of Tables

3.1 Tool comparison as to which domains they support. . . . . . . . . . . . . 44

4.1 Modelling operations in the MvK. . . . . . . . . . . . . . . . . . . . . . 60
4.2 Megamodelling operations in the MvK. . . . . . . . . . . . . . . . . . . 61
4.3 Activity operations in the MvK. . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Process operations in the MvK. . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Access control operations in the MvK. . . . . . . . . . . . . . . . . . . . 62
4.6 Service operations in the MvK. . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Create operations in the MvS. . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Read operations in the MvS. . . . . . . . . . . . . . . . . . . . . . . . . 64
4.9 Delete operations in the MvS. . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Complexity of different scheduler types. k is the number of imminent
models and n is the total number of models in the simulation. . . . . . . . 114

5.2 Summary of related work. ( - Supports, - Partially supports, - Does
not support) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 General evaluation, based on [208, 278]. . . . . . . . . . . . . . . . . . . 145
5.4 DEVS-specific evaluation, based on [179, 313, 317]. . . . . . . . . . . . 146
5.5 MvS operations and the measured calibration results. . . . . . . . . . . . 149

6.1 A comparison with several other DEVS debugging tools. . . . . . . . . . 216

B.1 Primitive functions modifying primitive datavalues. If a Value is taken or
returned, this refers to the value of the returned node. . . . . . . . . . . . 257

B.2 Lower-level primitive functions to implement. If a Value is taken or re-
turned, this refers to the value of the returned node. . . . . . . . . . . . . 258

xxxv





Chapter 1

Introduction

The complexity of engineered systems is rapidly increasing, mainly due to their heterogene-
ity at run time and design time. At run time, software controls hardware components in a
feedback loop, the complete system has to interact (safely) with the environment, and often
multiple such systems are connected over a network and have to cooperate to achieve a task.
At design time, these runtime requirements often require multiple languages and tools to be
combined, in order to create a single big system. With the advent of Cyber-Physical Systems
(CPS), smart mechatronic systems of the Industry 4.0 initiative, and the Internet-of-Things
(IoT), engineers are facing challenges of an unprecedented magnitude.

To successfully and efficiently tackle the complexity of engineered systems, modelling-
and simulation-based techniques are increasingly applied in the flow of the engineering
work. Model-Driven Engineering (MDE) [157] regards models as first-class concepts:
before realizing the system, stakeholders (e.g., control engineers, application engineers,
test engineers) build models of the various aspects (e.g., physical, mechanical, software) of
the system, resulting in a virtual product which can be analysed, simulated, and verified.
Stakeholder models capture the parts of the virtual product relevant to the stakeholder [52].
Often, stakeholders specialize in different domains and, therefore, their models are domain-
specific. Within MDE, Multi-Paradigm Modelling (MPM) [200] actively promotes this
specialization. MPM advocates modelling every relevant aspect of the system explicitly,
using the most appropriate formalism(s), at the most appropriate level(s) of abstraction,
while explicitly modelling the process.

Despite the proposed advantages of MPM for currently engineered systems, tool support
for MPM remains rather limited. While some tools exist, they often focus exclusively on a
selection of aspects of MPM, such as language engineering or process modelling. This is
not surprising, as each of these aspects constitutes its own research domain, often with its
own community. And while some academic tools exist that combine several such aspects,
industrial support is restricted to a single domain. Existing tools are often constructed in an
ad-hoc way, making future extensions difficult. To date, no unified foundation for MPM
exists that incorporates all aspects of MPM, while also being usable for future extensions
and applications in the domain of MPM.

In this thesis, we address this problem in three steps. First, we create a specification for a

1



2 CHAPTER 1. INTRODUCTION

Multi-Paradigm Modelling foundation. This specification is based on the tool requirements
defined by MPM, both explicitly and implicitly, as well as on a representative MPM case
study. Second, we construct a tool implementing this specification, using Multi-Paradigm
Modelling techniques. The application of MPM is expected to aid the construction of
the tool, thereby also building the case for MPM. Third, we consider several research
directions in the domain of MPM, illustrating how contributions in this direction can build
on our MPM tool. This shows the applicability of our prototype and highlights the many
potential directions for future work that our work enables. In summary, this thesis presents
a foundation for MPM together with a prototype implementation, built following an MPM
approach, and applied in several research directions.

1.1 Motivation
We will now elaborate on the motivation for each of these three aspects of this thesis. This
thesis explicitly builds on the assumption that MPM is indeed a useful approach, which we
establish first.

1.1.1 Usefulness of MPM
The assumption that MPM is useful, is based on various pieces of empirical evidence,
gathered throughout the years in both academics and industry. Most experiences are
however related to MDE, instead of MPM, as they don’t always use the most appropriate
formalism for the domain (e.g., a general purpose formalism) or don’t model everything
(e.g., not the process). Nonetheless, most applications use at least some formalisms that are
more appropriate than a general purpose programming language, and are therefore relevant
in this context. In the end, MPM is a specialization of MDE, meaning that all advantages of
MDE are also applicable for MPM.

MPM has been successfully applied by several companies. At ASML, the implementation
of servo controllers for lithoscanners only takes a couple of minutes, instead of multiple
days, as they can automatically generate code from their models, which had to be created
anyway for reasons of analysis and documentation [252]. At Ericsson, the implementation
of the channel estimation of the LTE-A uplink test bed of 4G telecommunication systems
using models was considered a success [56], though no hard numbers were mentioned.
At Motorola, consistent benefits from MDE and code generation were noticed, such as
a 1.2× to 4× overall reduction in defects, a 3× improvement in phase containment of
defects, and a 2× to 8× productivity improvement [34]. At Panasonic, initial results
are also satisfying [242]. General Motors, and in the automobile indistry in general,
embrace Model-Based System Engineering (MBSE) for modelling, simulation, testing, and
analysis [240].

Several applications were also made in an academic context. A gesture-based 3D application
was created in merely three days, despite the complex requirements [94]. The integration
of a quantitative analysis model went from several days to a few hours through the use
of an Model-Based Engineering (MBE) platform [47]. Embedded control software for
mechatronic systems could be developed and model checked within 12 days, which would
normally take at least six weeks [129]. Supervisory controllers were modelled and model
checked for an industrial-size case study [253]. Other applications are in the domain of



1.1. MOTIVATION 3

reconfigurable mechatronic systems [140], software architectures [119], model-integrated
computing [275], and tool interoperability [104].

MPM is never truely necessary, as it is always possible to hand-code everything [255].
Claiming that MPM is therefore useless is naive, as the same could then be said of high-level
programming languages, since all code could be written in assembly just as well. Reported
advantages of using MPM are decreased development time [34, 125, 200], faster code
execution [34], reduced costs [125], analyzability [145, 200], better documentation [200,
255, 341], or less errors [34, 125, 185, 341]. It is therefore natural that there is raising
interest in MPM in research [321] and in teaching [291, 292, 311].

Given this body of evidence, we assume MPM to be useful throughout the remainder
of this thesis. Note, however, that sometimes negative speedups were noted for some
components [34]. Thus sometimes code might still be required, though this is not disallowed
by MPM: code might very well be the most appropriate formalism.

Multi-Paradigm Modelling builds on top of some enabling techniques [316], each having
their own research community and motivating examples. We next look at some of the
most prominent techniques individually (details in Chapter 2), referring to applications
and experiences in this research domain. As MPM builds on top of these techniques,
experiences with them might be applicable to MPM as well.

Language Engineering

Thanks to language engineering, dedicated domain-specific languages can be created for
each individual aspect of the system. Instead of using some general-purpose (modelling)
language, domain-specific languages are often claimed to be less verbose and more in-
tuitive to domain-experts. The usefulness of language engineering has been shown on
several occasions [281]. Programming languages are simply not well-suited for some
domains, such as concurrency: threads thoroughly disrupt the essential determinism of
languages [176].

Activities

Thanks to activities, (domain-specific) models can be used for more than documentation
only. Instead of only having syntax, activities make it possible to describe domain-specific
semantics as well. Examples are simulation, optimization, execution, code generation,
coupling with external tools, and so on. While we leave open how these activities are
defined, model transformations are popular in the MDE community, as it relies on (often
visual) pattern matching and rewriting. This is based on graph transformations, which has
an extensive research community, but which we will not delve into in this thesis. Activities,
and in particular model transformations, are essential to support MDE [42, 257]. Indeed,
without activities, these domain-specific models are merely documentation, and while
useful, this does not unleash the full potential of MDE.

Process Modelling

Process modelling has become necessary due to the rising complexities of the design process.
By explicitly modelling the process, and potentially enacting it afterwards, the process
becomes structured and deterministic, thereby avoiding mistakes. With process enactment,



4 CHAPTER 1. INTRODUCTION

the process is executed: first the initial activity is executed on the defined model artefacts,
thereby generating or updating model artefacts, and then it continues on to the next activities.
Processes can support concurrency, thereby allowing multiple modellers to work on different
(manual) activities simultaneously. Automated activities can similarly happen concurrently,
and possibly even during the manual operations. Furthermore, process modelling is a first
step towards process optimization. The usefulness of process modelling has been shown
on several occasions [93, 184], and is especially important during concurrent design, for
example for embedded control software [129].

Summary

The literature provides various pieces of evidence suggesting the usefulness of MPM and
the various enabling technologies it encompasses, both in academics and industry. Building
on this information, this thesis assumes that MPM has indeed proven its usefulness.

1.1.2 Tool Support
The many applications of MPM already touched upon some of the requirements for a
full-fledged MPM tool. None of the currently existing tools, however, comes close to
fulfilling all the posed requirements. This is understandable, as most tools specialize in a
specific research domain. Only some of these tools were designed with MPM in mind, and
even those that focus on MPM, only implemented several aspects.

The literature on MPM also indicates that current tool support is either missing, rare [277],
or sub-optimal [125, 141, 147, 184, 242, 290]. Nonetheless, tool support is deemed essential
for the further development and application of the domain [47, 93, 141, 147, 185, 242, 277,
290]. With our proposed foundation and accompanying tool, we hope to unlock the full
potential of MPM, thereby enabling future research in MPM and its adoption.

1.1.3 Use of MPM Techniques
A tool that fully supports all aspects of MPM is almost certain to be a complex piece of
software. Not only will it have to cope with all aspects of language engineering, activities,
and processes, but it should also run as a service for both computation (i.e., run activities
“in the cloud”) and storage (i.e., a (meta)model repository), while interacting with multiple
geographically-distributed users with different backgrounds. These tool requirements, fur-
ther explored in chapter 4, largely overlap with the scenario for which MPM was conceived.
Although there is no physical aspect to an MPM tool, it consists of complex pieces of
software (i.e., the different clients and the server) serving geographically distributed users
interacting over a network (i.e., to allow for use as a service) and communicating with
an environment (i.e., the end-user) in a performance-constrained way (i.e., have usable
performance). Given our previous assumption that MPM is useful in such circumstances,
we intend to apply MPM to the development of the MPM tool.

When MPM techniques are applied in this thesis, we link back to the original requirements,
mentioning how the use of MPM has aided us in achieving them. As will be shown,
each aspect of the tool has a well-founded reason for the use of modelling in that specific
formalism, and is not merely modelled “for the sake of modelling”. The use of MPM
techniques does not necessarily enable new things to be developed, but will generally make



1.2. CHALLENGES AND CONTRIBUTIONS 5

its development more efficient. This can be compared to programming in either assembly
or Python: both languages can be used to create most software, though development in
Python will often be faster due to the lower cognitive gap and decreased verbosity. By
applying MPM to our prototype tool itself, we further build the case for MPM, while also
showing our tool to be sufficiently expressive.

In the literature, several approaches partially adopted an MPM approach by modelling
some aspects explicitly, resulting in advances in their respective fields. Examples include
an explicit model weaving model to be used as a specification [147], explicit traceability
models [277], explicit dependency model in the process [76], explicit dependency manage-
ment [225], explicit property specification and verification of models [95, 196], explicitly
modelling concurrency [174], and the explicitly modelled notion of a concept for operation
reuse [237].

1.1.4 Foundation for MPM

The original goal for creating the foundation for MPM was to stimulate further research
in MPM. We therefore present several non-trivial contributions to the domain of MPM,
explicitly relying on the proposed MPM foundation, thereby highlighting its applicability.
To highlight its wide applicability, applications will be given in different research directions,
each being a contribution in its own research domain.

These applications both utilise MPM and contribute to MPM. They utilise MPM, as they
require concepts such as domain-specific modelling, model transformations, processes,
model sharing, and so on, to be effective. They contribute to MPM, as they further aid in
the construction of systems following the MPM approach, making it easier to apply and
use.

Summary

With the usefulness of MPM motivated, the need for tool support becomes clear, certainly
because current tools are lacking. When constructing such a complex tool, the use of
MPM techniques is a logical choice, as MPM was assumed to significantly help in the
development of complex software. Finally, its usefulness for the application of MPM and
future research in MPM has to be evaluated.

1.2 Challenges and Contributions
To fulfill the goals set forth in this thesis, several challenges pose themselves.

• There is no clear set of requirements on what defines an MPM tool. While there is a
definition for MPM, it remains relatively abstract and doesn’t even go in detail on
what a paradigm is exactly. For example, modelling the process was implied in the
original definition of MPM, the process being a “relevant aspect”, but has been made
more explicit in later definitions, as this was rarely done. It is therefore difficult to
make sure that all requirements are collected and that the resulting tool is actually a
full-fledged MPM tool.



6 CHAPTER 1. INTRODUCTION

• It is hard to argue for the usefulness of MPM in the context of MPM tool development.
While several advantages were attributed to MPM, MPM was never before applied
to the construction of an MPM tool itself. This raises questions as to whether it is
possible (feasibility), but also on what are the benefits from doing this, if any.

• It remains challenging to define an MPM tool and show that it is both usable in
an MPM context today and can be used for further research in MPM in the future.
Indeed, it is impossible to predict all future research directions, and it is similarly
impossible to know about the problems in all research directions.

Each of these challenges gives rise to new contributions. The following contributions are
made in this thesis.

• Our first contribution is a specification for MPM, where we explicitly list the
requirements for any tool that supports MPM. We base these requirements on the
definition of MPM, both implicit and explicit, and on the Power Window case study,
which is minimal although representative of a typical application of MPM.

• Our second contribution is that of implementing a prototype tool for this specification
by explicitly modelling all aspects, using the most appropriate level of abstraction
and the most appropriate formalism. For each aspect, we note the (dis)advantages,
which can be of interest for other tool builders to decide whether or not to start
modelling (parts of) their tool as well. In particular, some explicitly modelled parts
resulted in contributions of their own, thereby further building the case for MPM:

– Explicitly modelling the conformance relation allowed for multiple confor-
mance relations to hold simultaneously, potentially with different types of
semantics or mappings.

– Explicitly modelling the physical type model allowed for direct access to the
physical level of the tool, while remaining independent of it.

– Explicitly modelling the external services allowed for more intuitive control
over them, while giving more tools for users to reuse.

– Explicitly modelling the process model enactment allowed for reuse of exist-
ing formalisms, and combined with the external services, this has the potential
to increase analyzability of processes.

– Explicitly modelling the performance allowed for deterministic performance
evaluations supporting what-if scenario’s, which might even be executed faster
than the actual application.

• Our third contribution is in showing that the tool can be used for the application of
and further research on MPM. As to the application of MPM, we present how the
Power Window case study is fully supported in our approach, linking back to the
original requirements. As to the future research in MPM, we applied our tool to
develop and prototype new contributions in several research directions:

– Live modelling was provided in a structured way, making it applicable to many
types of domain-specific languages with minimal effort.



1.2. CHALLENGES AND CONTRIBUTIONS 7

– Concrete syntax was made more general in terms of supported perceptualiza-
tion formats (e.g., plots, sound) and the usual icon-mapping restriction was
removed.

– Tool debugging features were enhanced by changing the level of abstraction at
which debugging occurs. This contribution was further enhanced with (efficient)
omniscient debugging techniques.

Structure
The remainder of this thesis is structured as follows. Chapter 2 presents the necessary
background on various techniques, formalisms, and tools used throughout this thesis. Chap-
ter 3 presents the current state of the art in the various dimensions of MPM. We elaborate
on each of these domains and end with a comparison of several existing tools. Chapter 4
presents the target audience and requirements of such a foundation for MPM. Starting from
these requirements, a solution architecture and interface is proposed. Chapter 5 presents the
various aspects in the development, which use MPM techniques itself. For each component,
we discuss the appropriateness of the chosen formalism, after which we present and evaluate
the model. Chapter 6 presents several contributions built on top of our foundation for MPM,
indicating its extensibility and applicability as a foundation for MPM. These applications
include a general framework for live modelling and concrete syntax, and considers a way
of debugging the tool. Chapter 7 concludes this thesis and presents future work.





Chapter 2

Background

This thesis makes use of several techniques and formalisms that might require some
introduction. We mostly remain at the conceptual level, only introducing the basics of
domain-specific modelling and multi-paradigm modelling. In the next chapter, we present
state of the art research in these domains and its various branches.

2.1 Domain-Specific Modelling

Developing complex, reactive, software-intensive systems using a traditional, code-centric
approach, is not an easy feat: knowledge is required from both the problem domain (e.g.,
power plant engineering), and computer programming. Apart from being sub-optimal
in terms of efficiency and cost, this can result in more fundamental problems. The pro-
grammer, implementing the software, has limited knowledge of the problem domain. The
domain expert, on the other hand, has deep knowledge of the problem domain, but limited
understanding of computer programs. This can result in communication problems, such
as false assumptions from either side. Furthermore, the domain experts finally receive a
program they don’t understand the workings of, making it difficult to validate (and modify).
Essentially, the conceptual gap between both domains hinders productivity.

Model-Driven Engineering (MDE) tries to bridge this gap by shifting the level of specifi-
cation from computing concepts (the “how”) to conceptual models or abstractions in the
problem domain (the “what”). Domain-Specific Modelling (DSM) [154] in particular makes
it possible to specify these models in a Domain-Specific Modelling Language (DSML),
using concepts and notations of a specific domain. The goal is to enable domain experts to
develop, understand, and verify models more easily, without having to use concepts outside
of their domain. It allows the use of a custom visual syntax, which is closer to the problem
domain, and therefore more intuitive. Models created in such DSMLs are used, among
others, for simulation, (formal) analysis, documentation, and code synthesis for different
platforms.

9



10 CHAPTER 2. BACKGROUND

2.1.1 Example
We explain the necessary steps for developing a system using the DSM approach, applied
to a simplified nuclear power plant control interface case study. The system consists of two
parts: the physical plant and the controller.

Plant The nuclear power plant takes actions as input (e.g., “lower the control rods”) and
outputs events in case of warning and error situations. Each nuclear power plant component
is built according to its specification, which lists a series of requirements (e.g., “the reactor
can only hold 450 bar pressure for 1 minute”). These are encoded in the model of each
component. Components send warning messages in case their limits are almost reached,
such that the user can take control and alleviate the problem. When a component goes
outside of its supported boundaries, an emergency shutdown is issued to prevent a nuclear
meltdown. There are two types of components:

1. Monitoring components, which monitor the values of their sensors and send messages
to the controller depending on the current state of the component. An example is the
generator, which measures the amount of electricity generated. Their state indicates
the status of the sensors: normal, warning, or error.

2. Executing components, which receive messages from the controller and execute the
desired operation. A valve, for example, is either open or closed. Their state indicates
the physical state of the component, for example open or closed.

Controller The controller acts as an interface between the plant and the user: users send
messages to the controller by pressing buttons, which the controller translates to operations
on the plant. The controller might opt to ignore it or send a different message. For example,
when a nuclear meltdown is imminent, the controller might ignore a button press to raise
the control rods. We implement a controller which has three main modes:

1. Normal operation, where the user is unrestricted and all messages are passed.

2. Restricted operation, where the user can only perform actions which lower the
pressure in the reactor. This mode is entered when any of the components sends out
a warning message. When all components are back to normal, full control is returned
to the user.

3. Emergency operation, where control is completely taken away from the user. This
mode is entered when any of the components sends out an error message. The
controller will forcefully shut down the reactor and ignore further input from the
user.

We construct a DSML which makes it possible to model such an interface, and express
the behaviour of each component, as well as the controller. We intend to automatically
synthesize code implementing the modelled behaviour.

2.1.2 Terminology
The first step in the DSM approach when modelling in a new domain is, after a domain
analysis, creating an appropriate DSML. A DSML is fully defined [161] by:



2.1. DOMAIN-SPECIFIC MODELLING 11

Concrete
syntax

Abstract
syntax

Semantic
domain

transformation

Graph

Semantic
mapping

m

M(m)

K(m)

Formalism

Syntax Semantics

Concrete Abstract
Semantic
Mapping

Semantic
Domain

Figure 2.1: Terminology

1. Its abstract syntax, defining the DSML constructs and their allowed combinations,
typically using a metamodel.

2. Its concrete syntax, specifying the visual representation of the different constructs,
either graphical (e.g., icons) or textual.

3. Its semantics, defining the meaning of models created in the domain [136], encom-
passing both the semantic domain (what is its meaning) and the semantic mapping
(how to give it meaning).

This definition of terminology can be seen in Figure 2.1. Each aspect of a formalism is
modelled explicitly, as well as relations between different formalisms. We will present these
four aspects in detail, presenting the model(s) related to the case study for each.

2.1.3 Syntax
The syntax defines which elements are valid in a specified language, though does not concern
itself with what the constructs mean. It consists of two parts: the abstract syntax (what
constructs are allowed) and concrete syntax (how do the constructs look like). The syntax is
used later on to generate a domain-specific syntax-directed modelling environment, meaning
that, by construction, only valid instances can be created. This maximally constrains the
modeller and ensures the models are (syntactically) correct by construction.

Abstract Syntax

The abstract syntax of a language specifies its constructs and their allowed combinations,
and can be compared to grammars specifying parsing rules. Such definitions are captured in
a metamodel, which are themselves a model of the metametamodel [169]. Most commonly,
the metametamodel is similar to UML Class Diagrams, making it possible to define classes,
associations between classes (with incoming and outgoing multiplicities), and attributes.
While abstract syntax reasons about allowable constructs, it does not state anything about
how they are presented to the user.

The abstract syntax definition for the nuclear power plant case study is shown in Figure 2.2.
It defines the concepts (e.g., reactor and pump), relations between them (e.g., a generator
cannot be directly connected to a steam valve), and their attributes (e.g., “flow rate” for a



12 CHAPTER 2. BACKGROUND

ElementWithBehaviour

OrthogonalComponent

name : String = OC_

water_level : int
pressure : int
rods_down : boolean

ReactorCore

SafetyValve

name : String
open : boolean = true

Pipe

CompositeState

State

current : boolean
initial : boolean

Condensor

water_level : int
pressure : int

WaterSource

WaterPump

flow_rate : int
name : String

output : int

Generator

TJunction

Turbine

Straight Bend

contain *

*
-ocContain

*

-containOC

*

-s_out

1 -s_in

0..1

behaviour

SCRAM

0..1     *

PumpOffState

PumpOnState

PumpState

after

seconds : int

after

*

*

GeneratorNormalState

GeneratorState

condition : String

onLoad

onLoad

* *

ControllerRestrictedState

ControllerAutomaticState

ControllerNormalState

ControllerState

ReactorOverpressureState

ReactorNormalState

RodsLoweringState

RodsDownState

ReactorState

condition : String

onPressure

onPressure

condition : String

onWater

onWater

CondensorOverpressureState

CondensorNormalState

CondensorState

condition : String

onPressure

onPressure

*

*

condition : String

onWater

onWater

**

ValveClosedState

ValveOpenState

ValveState

... ...

......

*
1

-s_in

-w_out

0..1

1

-c_in

-c_out

0..1

1

-w_in 0..1

-s_out1

n
e
x
t

0..1

0..1

-next_diverging
0..1

0..1 -diverging

close

0..1

*

open

0..1*

warning

0..1
*

n
o
rm

a
l0..1

*

error

0..1*

on

0..1*

off

0..1*

raise_rods

lower_rods

*

*

*

*

*

* 0..1

0..1

turbine

1

1

Figure 2.2: Abstract syntax definition for the nuclear power plant domain (some subclasses
omitted)



2.1. DOMAIN-SPECIFIC MODELLING 13

GeneratorNormalState

GeneratorOverloadedState

GeneratorEmergencyState

CondensorNormalState

CondensorOverpressureState

CondensorHighWaterState

ReactorNormalState

ReactorOverpressureState

ReactorHighWaterState

RodsDownState

RodsLoweringState

RodsUpState

Figure 2.3: Concrete syntax definition for the nuclear power plant domain (excerpt)

pump). For each component, we link it to a behavioural specification, though we haven’t
defined its semantics (or meaning) yet.

Concrete Syntax

The concrete syntax of a model specifies how elements from the abstract syntax are visually
represented. For each representable abstract syntax concept, a concrete syntax mapping
is defined. The definition of the concrete syntax is a determining factor in the usability of
the DSML, and therefore several “rules” were identified on how to make visual languages
usable [198].

Multiple types of concrete syntaxes exist, though they are usually either textual or graphi-
cal. A single model can have different concrete syntax representations, so it is possible for
one to be textual, and another to be graphical. Both have their advantages and disadvan-
tages: textual languages are more similar to programming languages, making it easier for
programmers to start using the DSML. On the other hand, graphical languages can represent
some problem domains better, due to the use of standardized symbols, despite them being
generally less efficient [219]. An overview of different types of graphical languages is
given in [72].

An excerpt of a possible visual concrete syntax definition for the nuclear power plant case
study is shown in Figure 2.3. Each of the constructs presented in the concrete syntax model
corresponds to the abstract syntax element with the same name. Now that we have a fully
defined syntax for our model, we create an instance of the case study, of which a screenshot
is shown in Figure 2.4. Each component additionally has a specification of its dynamic
behaviour, specifying when to send out messages, using the state of the underlying system,
as well as timeouts.



14 CHAPTER 2. BACKGROUND

Figure 2.4: Screenshot of an example nuclear power plant instance

2.1.4 Semantics

Since the syntax only defines what a valid model looks like, we need to give a meaning to
the models. This is done through semantics, to which there are two parts: the domain it
maps to (semantic domain) and the mapping itself (semantic mapping).

Semantic Domain

The semantic domain is the target of the semantic mapping. As such, the semantic mapping
will map every valid language instance to a (not necessarily unique) instance of the semantic
domain. Many semantic domains exist, as basically every language with semantics can act
as a semantic domain. The choice of semantic domain depends on which properties need
to be preserved. For example, DEVS [338] can be used for simulation, Petri Nets [203]
for verification, Statecharts [133] for code synthesis, and Causal Block Diagrams [61]
for continuous systems using differential equations. All these formalisms are elaborated



2.1. DOMAIN-SPECIFIC MODELLING 15

on later. A single model might even have different semantic domains, each targeted at a
specific goal.

For our case study, we use Statecharts as the semantic domain, as we are interested
in the timed, reactive, autonomous behaviour of the system, as well as code synthesis.
Statecharts were introduced by David Harel [133] as an extension of state machines and
state diagrams with hierarchy, orthogonality, and broadcast communication. It is used
for the specification and design of complex discrete-event systems, and is popular for the
modelling of reactive systems, such as graphical user interfaces. The Statecharts language
has defined semantics [135], and can therefore serve as a semantic domain.

Figure 2.5 presents a Statecharts model which is equivalent to the model in our DSML,
at least with respect to the properties we are interested in. Parts of the structure can be
recognized, though information was added to make the model compliant to the Statecharts
formalism. Additions include the sending and receiving of events, and the expansion of
forwarding states such as in the controller. The semantic mapping also merged the different
behavioural parts into a single Statechart. As is usually the case, the DSML instance is
less verbose and more intuitive, compared to the resulting Statechart instance.

Semantic Mapping

While many categories of semantic mapping exist [343], we only focus on the two main
categories relevant to our case study: translational and operational semantics.

First, translational semantics translates the model from one formalism to another, while
maintaining an equivalent model with respect to the properties under study. The target for-
malism has semantics, meaning that the semantics is “transferred” to the original model. For
our case study, this means mapping the model to a Statechart, as presented before.

Second, operational semantics effectively executes, or simulates, the model being mapped.
Operational semantics can be implemented with an external simulator, or through model
transformations that simulate the model by modifying its state. The advantage of in-place
model transformations is that semantics are also defined completely in the problem domain,
making it suitable for use by domain experts. For our case study, this means implementing
a simulator using model transformations.

Both types of semantic mapping are commonly expressed using model transformations,
which form the heart and soul of Model-Driven Engineering [257]. A model transformation
is defined using a set of transformation rules, and a schedule.

A rule consists of a Left-Hand Side (LHS) pattern (transformation pre-condition), Right-
Hand Side (RHS) pattern (transformation post-condition), and possible Negative Applica-
tion Condition (NAC) patterns (patterns which, if found, stop rule application). The rule
is applicable on a graph (the host graph), if each element in the LHS can be matched in
the model, without being able to match any of the NAC patterns. When applying a rule,
the elements matched by the LHS are replaced by elements of the RHS in the host graph.
Elements of the LHS that don’t appear in the RHS are removed, and elements of the RHS
that don’t appear in the LHS are created. Elements can be labelled in order to correctly link
elements from the LHS and RHS.

A schedule determines the order in which transformation rules are applied. For our purpose,
we use MoTiF [271], which defines a set of basic building blocks for transformation rule



16 CHAPTER 2. BACKGROUND

Normal

Overload

Emergency

[pressure > 100] /

warn(pressure)

[pressure > 120] /

error(pressure)

tm(30s) /

error(pressure)

[pressure < 100] /

normal(pressure)

Normal

High

Emergency

[water > 4500] /

warn(water)

[water > 5000] /

error(water)

[water < 4500] /

normal(water)

Low

[water < 500] /

warn(water)

[water > 500] /

normal(water)

[water < 300] /

error(water)

Condensor

Normal

Overload

Emergency

[pressure > 400] /

warn(pressure)

[pressure > 450] /

error(pressure)

tm(30s) /

error(pressure)

[pressure < 400] /

normal(pressure)

Normal

High

Emergency

[water > 2200] /

warn(water)

[water > 2400] /

error(water)

[water < 2200] /

normal(water)

Low

[water < 1700] /

warn(water)

[water > 1700] /

normal(water)

[water < 1500] /

error(water)

Up Lowering

Lifting Down

rods_lower

SCRAM

rods_lift

[rods_down]

[rods_up]

SCRAM

rods_lift

rods_lower

Reactor core

Normal Restricted Shutdown

H*

open_SV2 / SV2_open
open_WV1 / WV1_open
open_WV2 / WV2_open

close_SV1 / SV1_close

start_WP1 / WP1_start
start_WP2 / WP2_start

lower_rods / rods_lower
start_CP / CP_start

open_SV1 / SV1_open
close_SV2 / SV2_close
close_WV2 / WV2_close
close_WV1 / WV1_close

stop_WP1 / WP1_stop
stop_WP2 / WP2_stop

lift_rods / rods_lift
stop_CP / CP_stop

warn

normal

error

Controller

Normal

Overload

Emergency

[output > 750] /

warn(generator)

[output > 800] /

error(generator)

tm(30s) /

error(generator)

[output < 750] /

warn(generator)

Generator

Close

Open

SV1_close

SV1_open

SCRAM

Steam Valve 1

Close

Open

WV1_close
WV1_open SCRAM

Water Valve 1

Off

On

WP1_stop
WP1_start SCRAM

Water Pump 1

Off

On

WP2_stop
WP2_start SCRAM

Water Pump 2

Off

On

CP_stop
CP_start SCRAM

Condensor Pump

Close

Open

WV2_close
WV2_open SCRAM

Water Valve 2

Close

Open

SV2_close
SV2_open SCRAM

Steam Valve 2

Figure 2.5: Statechart equivalent to the behaviour shown in Figure 2.4



2.1. DOMAIN-SPECIFIC MODELLING 17

scheduling. We limit ourself to three types of rules: the ARule (apply a rule once), the FRule
(apply a rule for all matches simultaneously), and the CRule (for nesting transformation
schedules).

Next, we define both operational and translational semantics.

Translational Semantics With translational semantics, the source model is translated to
a target model, expressed in a different formalism, which has its own semantic definition.
The (partial) semantics of the source model then corresponds to the semantics of the target
model. As the rule uses both concepts of the problem domain and the target domain
(Statecharts in our case), the modeller should be familiar with both domains.

The schedule of our transformation is shown in Figure 2.6, where we see that each com-
ponent is translated in turn. Each of these blocks are composite rules, meaning that they
invoke other schedules. One such composite schedule is shown in Figure 2.7, where the
valves are translated. The blocks in the schedule are connected using arrows to denote the
flow of control: green arrows (originating at the checkmark) are followed when the rule
executed successfully, while red arrows (originating at the cross) are followed when an
error occurred. Three pseudo-states denote the start, the succesful termination, and the
unsuccesful termination of the transformation. Our schedule consists of a series of FRules,
which translate all different valve states to the corresponding Statecharts states. After
these are mapped, the transitions between them are also translated, as shown in the example
rule in Figure 2.8. In this rule, we look up the Statecharts states generated from the
domain-specific states, based on traceability links. When found, we create a link between
them if there was one in the domain-specific language. In this case, we map the SCRAM1

message to a Statecharts transition which takes a specific kind of event. Note that we do
not remove the original model, ensuring traceability.

Operational Semantics With operational semantics, a simulator for that formalism is
defined. This simulator can be modelled as a model transformation that executes the model
by continuously updating its state (defining a “stepping” function). Contrary to translational
semantics, the source model of operational semantics is often augmented with runtime
information, creating the difference between a “design formalims” and “runtime formalism”.
In our case study, for example, the runtime formalism is equivalent to the design formalism
augmented with information on current state and simulated time, as well as a list of inputs
from the environment.

An example rule is shown in Figure 2.9. The rule changes the current state by following the
“onPressure” transition. The left hand side of the rule matches the current state, the value of
the sensor, and the destination of the transition. It is only applicable if the condition on the
transition (e.g., > 450) is satisfied, by comparing it to the value of the sensor reading. We
use abstract states for both source and target of the transition, as we do not want to limit
the application of the rule to a specific combination of states: the rule should be applicable
for all pairs of reactor states that have an “onPressure” transition. The right hand side then
changes the current state to the target of the transition.

1A SCRAM is the emergency situation in a nuclear power plant, where the control rods are lowered to
effectively stop the nuclear chain reaction.



18 CHAPTER 2. BACKGROUND

Figure 2.6: Top-level transformation sched-
ule

Figure 2.7: Transformation schedule for
valves

0

1

2

<coded>

3

4

5

6

0

__pValveStateIcon

1

__pValveStateIcon

2

3

6

5

4

7
__pValveStateIcon

__pValveStateIcon

<
co
d
ed
>

<coded><coded>

<coded>

Figure 2.8: Example transformation rule for translational semantics

The schedule has the form of a “simulation loop”, but is otherwise similar to the one for
translational semantics and is therefore not shown here.

2.2 Process Modelling
The previous discussion of DSMLs already introduced several languages (e.g., Statecharts
and the DSL for the nuclear reactor) and a mappings from one language to the other. This
quickly becomes convoluted, as indeed it does not stop there: the Statecharts model has
semantics, which might be defined by mapping to another formalism, generating code, or
something similar. On the other hand, additional operations can be defined on the DSML,
such as optimization or expansion of syntactic sugar. For a more complex example, it is only
natural that the number of formalisms and activities between them increases as well. This
gives rise to the need for a structured approach to follow the required order of operations,



2.3. MULTI-PARADIGM MODELLING 19

0 1

2

T...
T...

3

4
4

7

<
<
b
eh
avio

r>
>

8

9

0 1

3

8

7

2
10

<coded>

__pReactorStateIcon __pReactorStateIcon

<
<
b
eh
avio

r>
>

<coded>

__pReactorStateIcon __pReactorStateIcon

T...
T...

Figure 2.9: Example transformation rule for operational semantics

on the correct models: a process model. This is elaborated on in Section 2.4.7.

2.3 Multi-Paradigm Modelling
Modern engineered, often cyber-physical, systems have reached a complexity that requires
systematic design methodologies and model-based aproaches to ensure correct and compet-
itive realization [200]. It is in this context that Multi-Paradigm Modelling (MPM) comes
into play: multiple heterogeneous domains come together and need to be managed. MPM
proposes to tackle these problems by modelling all relevant aspects of the system explicitly
at the most appropriate level(s) of abstraction, using the most appropriate formalism(s),
while explicitly modelling the process.

The most appropriate formalism is most often domain-specific, meaning that they can
be easily used by domain experts. These various models from different domains are
(automatically) mapped to a common domain, which is appropriate for the problem at
hand (e.g., Petri Nets). In combination with the process model, the task of domain experts
is limited to modelling in the DSMLs they are an expert in, with all manipulations and
transformations happening automatically. This shields domain experts from the underlying
solution domain, and makes the complete process repeatable, as it can be enacted.

To precisely define MPM, the notion of “paradigm” must be precisely defined. A paradigm
P is a collection of formalisms/languages, abstractions, and processes that satisfy properties
that are considered characteristic for P. The Object-Oriented paradigm (OOp), for example,
includes formalism(s) that have notions of object identity, encapsulation, specialization, etc.
Abstractions/formalisms such as UML class diagrams, but also programming languages
such as Java satisfy the OOp properties. Processes such as the Rational Unified Process
also satisfy OOp properties such as being iterative. With this definition, “multi-paradigm”
follows naturally, as a collection of formalisms/languages, abstractions, and processes,
composing these of the individual paradigms’ properties. This breaks down to composing
formalisms/languages, abstractions, and processes.



20 CHAPTER 2. BACKGROUND

idle armed detected

Arm

Disable

PersonDetected /

SoundAlarm

WrongCode

CorrectCode /

DisableAlarm

Figure 2.10: Example FSA of a home security alarm system.

MPM combines three complementary research areas:

1. Language Engineering to create and instantiate new languages. These languages
can be tailored to the problem domain, resulting in Domain-Specific Modelling
Languages (DSMLs). This aspect of MPM lowers the cognitive gap between the
problem and solution domain by decreasing verbosity and maximally constraining
the modeller to the problem at hand.

2. Activities to define operations on models, such as to execute them. These activities
can be tailored to specific DSMLs, thereby giving semantics to user-defined languages.
This aspect of MPM takes models beyond mere documentation, thus increasing their
usefulness.

3. Process Modelling to define the control and data flow of the development process.
The process is tailored to a specific problem, which gives rise to causal dependencies
between the used formalisms and activities to map between them. This aspect of
MPM provides an overview of the control and data flow used within the process,
which can be used for documentation, analysis, optimization, and enactment (i.e.,
automatic chaining and execution of activities).

2.4 Formalisms
The aforementioned techniques make extensive use of various formalisms, some of which
have already been briefly mentioned. The most relevant formalisms, which might require
an introduction, are mentioned below.

2.4.1 Finite State Automata

The Finite State Automata (FSA) language [143] is a modelling language used to model
reactive systems with discrete state. Its building blocks are:

• States, which represent the state a system is in. There is exactly one initial state,
where execution starts.

• Transitions between states that model the flow of the system. A transition is triggered
by an event from the environment, consuming it as the transition is taken. Only
transitions whose source state is the current state can fire. After triggering, the target
of the transition becomes the new current state. A transition can additionally raise an
output event to the environment.



2.4. FORMALISMS 21

State

name : String

initial : Boolean

current : Boolean

Transition

raise : String

trigger : String

Figure 2.11: Abstract Syntax of Finite State Automata. Runtime-only concepts are shown
in bold. The association “Transition” has additional attributes defined on it.

Its abstract syntax is shown in Figure 2.11. A pseudo-code version of its semantics is shown
in Algorithm 1.

ALGORITHM 1: FSA operational semantics.
state ← s0
while state 6∈ FINALSTATES(M) do

wait for input
state ← TARGET(M, input)

end while

A frequently used visualization is as a state diagram, where states are represented as circles
and transitions as arrows, labelled with their trigger and output event. The initial state is
pointed to by an arrow starting from a small black dot. An example is shown in Figure 2.10,
where a simple home security alarm system is modelled. In the idle mode, the alarm system
can be armed by the user. If someone is detected in the armed mode, the alarm goes off,
until the user inputs the correct combination. The alarm can be disabled by sending the
Disable event, but only when no intrusion is detected.

2.4.2 Causal Block Diagrams
The Discrete Time Causal Block Diagrams (DTCBD) language [61] is a dataflow lan-
guage, where signals are propagated through a network of connected blocks. It allows
to model systems by defining them as a set of equations. The semantics is given by a
set of continuous signals. Blocks implement atomic mathematical operations, which take
their input signals and generate, instantaneously, a single output value. The mathematical
concepts modelled by these blocks include constants, addition, negation, multiplication,
and inversion. Additionally, a delay block is provided which holds the value for a single
iteration, thus introducing the notion of “next step”. At initialization, the block uses the
value coming into it via the Initial Condition (IC) link. Connections between blocks indicate
dependencies: the output of the source block is used as input by the target block.

We consider two types of CBDs: discrete time and continuous time.

Discrete Time

The abstract syntax of Discrete Time Causal Block Diagrams (DTCBDs) is shown in
Figure 2.12.

Figure 2.13a presents a simple DTCBD model representing the equations shown in Fig-
ure 2.13b. The equation for y is reduced to y = x − y, which is a direct feedback loop



22 CHAPTER 2. BACKGROUND

ICBlockBlock

Addition Multiplication

Negation Inversion

Constant

value : Float

Probe

name : String

Delay

Link
InitialConditionsignal : Float last_in : Float

Time

time : Float

Figure 2.12: Abstract Syntax of Discrete Time Causal Block Diagrams. Runtime-only
concepts are shown in bold.

ALGORITHM 2: DTCBD operational semantics.
clock ← 0
state ← INITSIGNALS(M)
numIters ← 0
while numIters < maxIters do

g ← DEPGRAPH(M,numIters)
s ← LOOPDETECT(g)
for c in s do

if c = {gblock} then
state ← COMPB(c, state)

else
state ← COMPL(c, state)

end if
end for
clock ← clock + ∆t
numIters ← numIters + 1

end while
return clock , state

x
1

D
IC

+

-

z

y

(a) Example DTCBD, containing an algebraic
loop.


y(t) = x(t)− y(t)

z(t) =

{
x(t) if t = 0

y(t− 1) if t > 0

(b) The equations represented by the example
DTCBD model.

Figure 2.13: Example DTCBD.



2.4. FORMALISMS 23

ICBlockBlock

Addition Multiplication Derivation

Negation Inversion Integration

Constant

value : Float

Probe

name : String
Delay

Link
InitialCondition

Figure 2.14: Abstract Syntax of Continuous Time Causal Block Diagrams.

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

10

1

1

20

(a) Example CTCBD model.

{
v(t) =

∫ t

0
m·g−k·y(t)

m dt

y(t) =
∫ t

0
v(t)dt

(b) The equations represented by the example
CTCBD model.

Figure 2.15: Example CTCBD.

(termed “algebraic loop”). In code, the statement y = x - y does not translates to the
equation y = x − y, as the old values of x and y are used in the right hand side, instead
of respecting the feedback loop. To actually implement the equation y = x− y, this must
be solved to y = x

2 , which can be implemented in code. Programmers therefore have to
(manually) solve the set of linear equations to come up with the code to solve this system
of equations. Small changes in the system of equations can result in large changes on the
resulting solution. In contrast, DTCBDs handle linear algebraic loops natively, solving
y = x− y automatically.

Continuous Time

The Continuous Time Causal Block Diagrams (CTCBD) language [61] is an extension
to DTCBDs, introducing two continuous blocks: an integrator and derivator. Its abstract
syntax is shown in Figure 2.14. Semantics can be defined by mapping CTCBD models
to DTCBD models, thereby discretizing their behaviour. While semantics is not perfectly
preserved, this is often a good enough approximation.

Figure 2.15a presents a simple CTCBD model representing the equations shown in Fig-
ure 2.15b. These equations model the behaviour of a mass attached to a spring, which
is going up and down. When mapping this CTCBD to a DTCBD, the integrator blocks
are expanded to a discretized version of the integrator, for example using the forward
Euler approach. While both languages look similar, there is a non-trivial translation step
between them: discretization. Additionally, while discretizing, it is possible to perform
an optimization step for constant folding, dead-block removal, and flattening [211]. Two
example model transformation rules are shown for expansion (Figure 2.16) and optimization
(Figure 2.17).



24 CHAPTER 2. BACKGROUND

2

3

8

0

7 9

10 1112
13

14

15

16 17

1819

20 21

1 45

D D

+X

IC

IC

?

t
0.1

?

0
0

∫

?

IC

0 1

4

5 6

3

∫?

?

?
IC 2

Figure 2.16: Expand rule for an integrator block.

1
x ?

1
x

?

k
x

k
x

1/k
1/x

0
1 2 3

4

0
1 2

5 6
4

Figure 2.17: Optimize rule for an invertor block.

2.4.3 Petri Nets
The Petri Nets (PN) formalism is a formalism used to model non-determinism and concur-
rency. A Petri Net is a directed, weighted bipartite graph, consisting of two types of nodes:
places and transitions. Places are marked with a number of tokens, which together form the
initial marking of the Petri Net. The number of black dots (or a number) in a place denotes
the marking of that place. Edges can be drawn from a place to a transition, or vice versa.
Arcs are annotated with a weight, though no annotation means weight one. Having n arcs
between the same place and transition is similar to a single arc with weight n. Visually, a
place is represented as a circle, whereas a transition is represented as a bar.

A transition is considered to be enabled if, for all incoming arcs, the weight is less than
or equal to the marking of the place it originates from. An enabled transition can be fired,
in which case the markings of all connected places are updated. For the incoming arcs,
the connected places have their marking decremented with the weight of the arc. For the
outgoing arcs, the connected places have their marking incremented with the weight of the
arc.

An example Petri Net model is shown in Figure 2.18a, modelling a simple critical section
protected by a semaphore. The initial marking of the semaphore is one (indicating that it
is available), while the critical sections both have zero tokens (indicating that they are not
entered). Both “acquire” transitions can be fired, but after one is fired, the other becomes
disabled, as the semaphore token is consumed. Afterwards, only the “release” transition
can be fired of the same branch that executed its “acquire” transition.

The primary applications of Petri Nets is for analyzability: reachability, boundedness,
liveness, deadlocking, and so on. [203] Many of these properties are analyzed using a
reachability graph, containing all markings reachable from the initial marking, intercon-
nected with the transitions that need to be fired to go from one marking to another. For
example, the reachability graph of the example model in Figure 2.18a is presented in
Figure 2.18b. Analyzing this reachability graph, it is clear that it is impossible to have a



2.4. FORMALISMS 25

sec1 clear sec2

acquire1

release1 release2

acquire2

(a) Petri Nets example model of a mutual exclusion algorithm
for two critical sections.

<1,0,0>

<0,0,1>

acquire1

acquire2

release1

release2

<0,1,0>

(b) Reachability graph of the Petri Net
shown in Figure 2.18a. Each state
encodes the number of tokens in the
places as follows: 〈sec1, clear, sec2〉

Figure 2.18: Example Petri Net with reachability graph.

token in both critical sections simultaneously (i.e., both critical sections cannot be entered
simultaneously).

2.4.4 Statecharts

The Statecharts (SC) formalism is an extension of state machines and state diagrams, with
hierarchy, orthogonality, and broadcast communication. It is popular for the modelling
of reactive systems, such as graphical user interfaces. Its basic building blocks are states
that are connected to each other through transitions, encoding how the system behaves: a
transition specifies to which event it conditionally reacts, and optionally which event should
be raised when the transition is fired. Hierarchical states group a number of states, of which
one is the default. When the hierarchical state is entered, its default state is entered as well.
Orthogonal states specify behaviour that is executed concurrently and are contained by a
hierarchical state. Its semantics are defined by flattening the orthogonal components (i.e.,
taking the cross products of the states of all hierarchical components). Different orthogonal
components communicate with each other through events.

A Statechart generally consists of the following elements:

• states, either basic, orthogonal, or hierarchical;

• transitions between states, either event-based or time-based;

• actions, executed when a state is entered or exited;

• guards on transitions, modelling conditions that need to be satisfied in order for the
transition to “fire”;

• history states, a memory element that allows the state of the Statechart to be restored.



26 CHAPTER 2. BACKGROUND

2.4.5 Statecharts + Class Diagrams

The Statecharts + Calss Diagrams (SCCD) [298] formalism extends Class Diagrams by
associating each class with a definition of its behaviour in the form of a Statecharts model.
We extend SCXML for the modelling of SCCD models, thus creating the SCCDXML
language [298]. Although it is background to our approach, this language was (co-)created
within the scope of this thesis. We first present the new features of our language, and then
we discuss the management of objects at runtime.

Despite SCCD being an extension of the Class Diagrams language, several additions to
the Statecharts formalism were made as well. These additions allow the Statecharts
to interact with the Class Diagrams and handle novel situations occuring due to their
combination. Additions to both Class Diagrams and Statecharts include:

• ports, which allow the model to communicate with its environment;

• default class, which is the class that is instantiated at startup;

• library imports, allowing the use of programming language libraries within the
Statecharts;

• relationships, allowing associations and inheritance between different classes;

• additional event scopes, such as local (only visible in the sending Statecharts),
broad (visible in all Statecharts instances), output (visible on the output ports),
narrow (visible in a single target Statecharts), and cd (class diagram management
event).

At runtime, a central entity called the object manager is responsible for creating, deleting,
and starting class instances, as well as managing links (instances of associations) between
class instances. It also checks whether no minimal or maximal cardinalities are violated
when the user deletes or instantiates an association, respectively. As mentioned previously,
instances can send events to the object manager using the “cd” scope. The object manager
can thus be seen as an ever-present, globally accessible object instance, although it is
implicitly defined in the runtime, instead of as an SCCD class.

When the application is started, the object manager creates an instance of the default
class and starts its associated Statecharts model. From then on, instances can send
several events to the object manager to control the set of currently executing objects. The
object manager accepts four events: create instance, delete instance, start instance, and
associate instance.

The object manager, in combination with input/output ports of the diagram, replaces the
invoke and send tags of the current SCXML standard. We believe this solution to be more
general and more modular. The invoke tag, for example, does not allow for instances
(effectively, agents) to run concurrently for the whole duration of the program, does not
offer a comprehensive interface for object management, and does not offer any checks on
the structure of the system at runtime. Moreover, using ports instead of direct sends to a
predefined location is more modular, since the Statecharts model does not need to know
the actual service that it communicates with (it just needs to know its interface), which
means it can be reused in different contexts.



2.4. FORMALISMS 27

Figure 2.19: Bouncing ball example in SCCD (abstracted).

Figure 2.19 presents a simple bouncing ball example as an SCCD model. It is shown that
there are four classes: MainApp (the default class), Window (representing a window in
which the ball is bouncing), Button (buttons in the window), and Ball (the ball itself). Apart
from the MainApp, each class has some associated behaviour. For example, a ball can
be bouncing, selected, or being dragged, and switches between these modes with mouse
clicks.

2.4.6 Discrete Event System Specification

DEVS is a discrete-event formalism with a long history, which started in 1976 [338]. Since
then, many variants have come to exist, all specialized for a specific domain. Main advan-
tages of DEVS are its rigorous and precise specification, as well as its support for modular,
hierarchical construction of models. DEVS frequently serves as a simulation “assembly
language” to which models in other formalisms are translated, either giving meaning to
new (domain-specific) languages, or reproducing semantics of existing languages. Mod-
els in different formalisms can hence be meaningfully combined by mapping them onto
DEVS.

A more elaborate explanation of DEVS is given in our DEVS tutorial [312].

DEVS comprises two types of models: Atomic DEVS models (defining behaviour) and
Coupled DEVS models (defining structure).

Atomic DEVS

An Atomic DEVS model is the basic building block of a DEVS model. Its specification is
shown in Specification 2.1.



28 CHAPTER 2. BACKGROUND

AM = 〈X,Y, S, δint, δext, λ, ta〉 (2.1)

X set of input events

Y set of output events

S set of sequential states

δint : S → S internal transition function

δext : Q×X → S external transition function

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total states

λ : S → Y ∪ {φ} output function, with φ the null event

ta : S → R+
0,+∞ time advance

Intuitively, the behavioural semantics are as follows. The system enters a sequential state
s ∈ S and schedules an “internal” transition to state δint(s) after ta(s). Before undergoing
the transition, λ(s) is invoked to generate an output event y ∈ Y . If before the scheduled
internal transition occurs, an external input event x ∈ X is received, the scheduled output
generation and subsequent transition do not occur. Instead, an “external” transition is made
to δext((s, e), x). Here, e is the elapsed time, the time that has passed in the state s since
the last transition, until the event was received. No output is generated in this case. Upon
arrival in the new state, either through δint or δext, the algorithm repeats.

Coupled DEVS
A Coupled DEVS model is the structuring concept of DEVS, and allows various Atomic
and Coupled DEVS models to be combined through parallel composition. Its structure is
shown in Specification 2.2.

CM = 〈Xself, Yself, D,MS, IS, ZS, select〉 (2.2)

Xself set of input events

Yself set of output events

D set of model instance labels

MS = {Mi|i ∈ D} set of submodels

Mi = {〈Xi, Yi, Si, δint,i, δext,i, λi, tai〉|i ∈ D} (atomic) submodel specification

IS = {Ii|i ∈ D ∪ {self}} influencee mapping (topology)

Ii = 2D∪{self}\{i} set of influencees’ labels

ZS = {Zi,j |i ∈ D ∪ {self}, j ∈ Ii} translation mapping

Zself,j : Xself → Xj input-to-input translation

Zi,j : Yi → Xj output-to-input translation

Zi,self : Yi → Yself output-to-output translation

select : 2D → D select function



2.4. FORMALISMS 29

Intuitively, the semantics are given as follows. The coupled DEVS model instantiates
all of its submodels, which are all considered to be atomic DEVS models (as a coupled
model can always be flattened to an atomic model), and keeps their references (or labels)
in D. The atomic DEVS submodels’ specifications are found in MS. Submodels can be
connected and the connection topology is encoded in the influencee set IS, which lists for
each subcomponent, all the other subcomponents that it influences (i.e., sends its output to).
Upon forwarding an event to another subcomponent, the event is translated by ZS, which
can map input-to-input (for external input coupling), output-to-input (for internal coupling),
and output-to-output (for external output coupling). When multiple internal events are
scheduled at the same time, in different sub-models, the select function is invoked for
tie-breaking.

Example

The DEVS specification of a simple traffic light model is given below. Note that, as per
the DEVS semantics, the output function λ is invoked before the internal transition δint
is taken. This explains why the produced events are non-intuitive (e.g., raise show yellow
for GREEN). The traffic light atomic DEVS model is shown in Specification 2.3. The
policeman’s behaviour is simpler and is shown in Specification 2.4. Finally, the atomic
models are composed in a coupled DEVS model, shown in Specification 2.5. From this
complete DEVS specification example, it is clear that something is lacking: nowhere has
been specified what is the initial state, and how long the system has already been in that
state.

Initial Total State

While the previous definition of Atomic and Coupled DEVS models is as in the literature,
it does not include initialization [317]. Initialization is often left to the tool, though many
implementations disagree on how this is done, as it is not a part of the formalism. For
example, while some tools allow the initialization of the initial state and how long the
simulator remains in this state, before transitioning, other simulators only take the initial
state. Both situations can lead to problems. When only the initial state is given (e.g.,
adevs [210], VLE [226], and X-S-Y [144]), modellers don’t have the required flexibility:
they cannot configure how long the model is already in that state. When both the initial state
and an initial time advance is given (e.g., CD++ [328], DEVS-Suite [158], MS4Me [258],
PowerDEVS [39]), this problem is addressed, although inconsistencies might arise. Indeed,
the initial time advances bears no relation to the actual time advance, meaning that it is
perfectly possible to stay in the initial state far longer than its time advance has dictated.
Given that the external transition function explicitly requires that e ≤ ta(s), this could
be violated, without any protection from the tool or the formalism. In the light of DEVS
standardization efforts [10, 251], it is problematic that various tools implement different
methods of initialization.

To address these problems, we augment the atomic DEVS specification with an initial total
state qinit ∈ Q, comprising the initial state sinit and the initial elapsed time einit. This alters
the atomic DEVS specification to the following.

AM = 〈X,Y, S, qinit, δint, δext, λ, ta〉



30 CHAPTER 2. BACKGROUND

Light = 〈Xlight, Ylight, Slight, δint,light, δext,light, λlight, talight〉 (2.3)

Xlight = {toAuto, toManual}
Ylight = {show green, show yellow, show red, turn off}
Slight = {GREEN, YELLOW, RED, GOING MANUAL, GOING AUTO,MANUAL}

δint,light = {GREEN → YELLOW, YELLOW → RED, RED → GREEN,

GOING MANUAL → MANUAL, GOING AUTO → RED}
δext,light = {(GREEN, , toManual)→ GOING MANUAL,

(YELLOW, , toManual)→ GOING MANUAL,

(RED, , toManual)→ GOING MANUAL,

(MANUAL, , toAuto)→ GOING AUTO}
λlight = {GREEN → show yellow, YELLOW → show red,

RED → show green, GOING MANUAL → turn off,

GOING AUTO → show red}
talight = {GREEN → 57, YELLOW → 3, RED → 60,

MANUAL → +∞, GOING MANUAL → 0, GOING AUTO → 0}

Police = 〈Xpolice, Ypolice, Spolice, δint,police, δext,police, λpolice, tapolice〉 (2.4)

Xpolice = {}
Ypolice = {toAuto, toManual}
Spolice = {BREAK,WORKING}

δint,police = {BREAK → WORKING,WORKING → BREAK}
δext,police = {}
λpolice = {BREAK → go to work,WORKING → take break,

tapolice = {BREAK → 120,WORKING → 360}

System = 〈Xself, Yself, D,MS, IS, ZS, select〉 (2.5)

Xself = {toAuto, toManual}
Yself = {show green, show yellow, show red, turn off}
D = {light1, police1}

MS = {Mlight1 = Light,Mpolice1 = Police}
IS = {light1→ {self}, self → {light1}, police1→ {light1}}
ZS = {Zself,light1 = {toAuto→ toAuto, toManual→ toManual},

Zpolice1,light1 = {take break→ toAuto, go to work→ toManual},
Zlight1,self = id

select = {{light1, police1} → police1, {ligth1} → light1, {police1} → police1}



2.4. FORMALISMS 31

Initial State The initial state sinit ∈ S specifies the system state in which simulation
commences. Its addition is logical, and has up to now been implemented in different
simulation tools, as an implicit ad-hoc extension to the formalism. In the case of the
traffic light example, we may specify that the traffic light starts in the GREEN state and the
policeman in the BREAK state.

Initial Elapsed Time The initial elapsed time einit specifies how long the system has been
in this state, without a transition being observed. We argue for its importance in providing
flexibility to the DEVS modeller.

If only an sinit is present in the specification, but not einit, it is possible to specify GREEN
and BREAK as the initial state for the traffic light and policeman, respectively, but one
is restricted to their time advances. Indeed, without einit, the initial elapsed time would
be implicitly equal to 0. This schedules the first internal transition of the policeman at
time 120. The traffic light will have internal transitions at times 57 (to YELLOW), 60 (to
RED), and 120 (to GREEN). Following this sequence, the policeman will always send its
interrupt at the exact same point in time, namely when a switch is made from RED to
GREEN. Therefore, it is impossible for the modeller to reproduce the real-world scenario
where, for example, the policeman interrupts after the light has been in the YELLOW state
for 1.5 time units. To do this, the model itself would have to be drastically modified (e.g.,
adding an artificial “initialization” state to the policeman model). This impedes modular
re-use of submodels.

What we wish to achieve is shown in Figure 2.20, which includes the “negative” simulation
time (i.e., what hypothetically happened before simulation, given the specified model).
While this figure includes the state trace from before the start of the simulation, we can only
go back until the last transition, as we have no knowledge about how we ended up in that
state (e.g., before time −10 for police1). To remain consistent with the DEVS specification,
it is required to alter the duration since the last event for each atomic model individually.
By doing this, each individual atomic DEVS model can be shifted relatively to all others.
For example, Figure 2.21 presents two different initial elapsed time configurations, with
their effect on the simulation.

In the traffic light example, we augment the models with the following initial total states.
For the sake of the closure under coupling, we set the initial elapsed time of the traffic
light to 10. Therefore, the light enters YELLOW at time 47. To ensure that the policeman
sends the external interrupt after the light has been in state YELLOW for 1.5, the transition
happens at time 48.5. To achieve this, we compute its desired initial elapsed time as
einit,police1 = 120− 48.5 = 71.5. Thus, the policeman has spent 71.5 time units in BREAK,
and transitions after 48.5 time units, at which point the light will have been in YELLOW for
1.5 time units, as desired. Various configurations exist to achieve the same result, such as
having the traffic light start at a different state or with a different elapsed time.

qinit,light1 =(GREEN, 10) qinit,police1 =(BREAK, 71.5)

2.4.7 Formalism Transformation Graph + Process Model
The Formalism Transformation Graph + Process Model (FTG+PM) [186] formalism was
conceived to provide an overview of the complete process, control flow and data flow,



32 CHAPTER 2. BACKGROUND

Figure 2.20: Simulation trace with hypothetical negative simulation time (grayed out).

Figure 2.21: Various options for shifting the police model.

including all used formalisms and the activities between them. As the name suggests, an
FTG+PM model consists of two parts: the Formalism Transformation Graph (FTG) and the
Process Model (PM). The FTG presents all used formalisms (the nodes) and their relations
(the links), and presents an overview of all languages and activities used in the process.
The PM mandates the order of activities to execute, as well as on which models (data) they
operate.

An FTG+PM model has two primary applications: documentation and enactment. As
documentation, the FTG+PM summarizes the languages used, the activities between them,
and the process of getting from start to finish, including control and data flow. Enacting
an FTG+PM means to execute the series of activities defined in the process model in the
correct order: start at the initial node and execute the activities in the defined order. There
might be concurrent activities, which are then executed concurrently. Execution creates or
modifies the models linked to that activity.

For example, consider the safety analysis of a simplified power window [200]. All modelling



2.4. FORMALISMS 33

FTG PM

req
:Requirements

plant
:Plant

:Marked
PetriNets

env
:Environment

query
:SafetyQuery

:Encapsulated
PetriNets

ctrl
:Control

:Reachability
Graph

:Encapsulated
PetriNets

Requirements

Plant

Environment
 

Control

Safety
Query

Encapsulated
Marked

PetriNets

Marked
PetriNets

Reachability
Graph

revise
plant

revise
env

revise
ctrl

revise
query

make
initial

combine

mark

analyse

plant
toPN

env
toPN

ctrl
toPN

revise
req

Architecture revise
arch

:Encapsulated
PetriNets

arch
:Architecture

True

False

revise
req

revise
plant

revise
env

revise
ctrl

env
toPN

ctrl
toPN

combine

revise
query

analyse

mark

make
initial

plant
toPN

revise
arch

bfs_print

bfs_print

Figure 2.22: Example FTG+PM for safety analysis of a simplified power window.

happens using domain-specific languages, as this is done by domain experts. The actual
safety analysis happens using Petri Nets and by creating a reachability graph, which is
verified to make sure that an unsafe state can never be reached. Domain-specific languages
are thus translated to Petri Nets, transparent to the domain experts.

Figure 2.22 presents the FTG+PM of this simplified process. A more complete FTG+PM
is discussed elsewhere [91, 204]. On the left side, all formalisms are shown (rectangles),
including the domain-specific ones (e.g., Plant, Environment, Control) and the general
purpose ones (e.g., Marked Petri Nets, ReachabilityGraph). The activities between them
are also shown (circles) and can be either automated (e.g., PlantToPN, Combine) or manual
(e.g., RevisePlant, ReviseQuery). For each activity, it is shown which type of models it takes
as input and which it returns as output. For example, mark takes in a ReachabilityGraph
and SafetyQuery and outputs a new ReachabilityGraph. On the right side, the process is
shown, which starts at the top, and uses the formalisms and activities on the left. Execution
starts at the top of the PM, which is in this case an Activity Diagram. Besides control flow,
there is also a notion of data flow: each activity generates a set of models, which can then
be reused. The models on the right side are instances of the formalisms on the left side.
When the fork node is reached, all five branches execute concurrently. When the join node
is reached, control only progresses when all connected branches have terminated. In this
case, we see that there are DSLs for all aspects of the process, after which the translation to
Petri Nets and the reachability analysis happen automatically. In other words, the domain
experts are never shown the Petri Nets on which the analysis was actually done.





Chapter 3

State of the Art

Given the necessary background, we now introduce the reader to several relevant aspects of
MPM in full detail. For each aspect, often a research domain on itself, we briefly mention
some of the ongoing research in these domains. The full extent of these domains is not
necessary to achieve MPM, though it aids in an MPM context as well. At the end of this
chapter, several tools are compared according to their support for these aspects of MPM.
As will be shown, each tool focusses on a select number of research domains, though they
go deep in them. In contrast to these tools, our prototype tool for MPM touches upon all
mentioned research domains, but not at the same level of depth.

3.1 Language Engineering
In the domain of language engineering, one particular focus is the abstract syntax and the
associated conformance relation. Of particular interest to this section is the definition of
the abstract syntax: the metamodel. As it is the abstract syntax model that constraints
its instances, thus defining the type, it is often termed the type model. It is through such
metamodels that new languages are engineered. In most cases, a metamodel consists of
two parts [256]: 1) a structural constraint, which is itself typed by another type model,
and 2) static semantics, which consists of a set of expressions in a constraint language
such as OCL [3]. Static semantics, although not related to semantics, are used to further
constrain the set of correct instances, as shown in Figure 3.1. A model is expressed as
a complex graph of objects [266, 267], which conforms to the specified type model. As
both parts are merely constraints, a type model is in essence a set of constraints, on which
constraint satisfaction can be used to automatically generate instances [256]. We elaborate
on the single most important aspect of every (meta-)modelling tool: the type/instance
relation [32, 43, 169, 279].

3.1.1 Instantiation and Conformance

Figure 3.1 naturally raises the question how to go from the type model to the instance, and
back. For this, two particular functions are defined: instantiation and conformance.

35



36 CHAPTER 3. STATE OF THE ART

Figure 3.1: Meaning of a simple Petri Nets metamodel. U represents all possible instances,
including those violating the structure; TS represents all instances that conform structurally,
but not necessarily to all the constraints; TS∧C represents all instances that conform both
structurally and fulfil all constraints.

Instantiation starts from a type model, and generates an instance of that particular type
model. For example, instantiating a Place from the Petri Net metamodel returns a Place
instance, visualized as a circle. The particular configuration of this element (i.e., its number
of tokens) is not defined: it can be set to a hard-coded default value, a user-defined default
value, or simply a positive random number. Whichever option is taken, depends on the
instantiation semantics defined over this type model.

Conformance goes the other way around, checking whether or not a particular object is an
instance of the type it specifies. Generally, a model should conform to its metamodel when
performing operations on it, as otherwise the model is considered invalid. Depending on
the conformance check, it might be necessary to pass a type mapping too: a way to link
elements from the instance to type it is instantiated from. This is similar to the notion of a
context [14] for some operations.

Due to the duality of both functions, we can say that for any possible model, a succesfully
instantiated element needs to conform to the type model it was instantiated from: ∀i ∈
[[TMtype]]inst : conftype(i) = true Several variations exist for both instantiation [19, 256]
and conformance [19, 235, 267]. Nonetheless, the duality of both functions should still be
maintained for these functions to retain their value.

It is through these two relations that meta-modelling layers are constructed [169]. A
popular architecture for this is the four-layered architecture, as popularized by the Object
Management Group (OMG) [4] and shown in Figure 3.2. The top level, M3, defines the
Model at the MetaCircular Level (MMCL), which conforms to itself. It is a language for
defining metalanguages, and thus general. A popular choice for this level is the Meta-Object
Facility (MOF) [4]. The level below, M2, defines the language that will be used to create the
user models. A popular choice for this level is the UML [5]. At the M1 level, user models
are defined in terms of the language defined at M2. That is, if the M2 level presented a
language for UML Class Diagrams, the M1 level will only contain class diagrams (i.e.,
instances). Finally, the M0 level represents the physical world, and thus the system that
was being modelled at M1. In our case, this is the actual system being modelled with the
class diagrams.



3.1. LANGUAGE ENGINEERING 37

MOF

M3

UML

M2

User Models

M1

System

M0

conformsTo

conformsTo

conformsTo

conformsTo

Figure 3.2: Four-layered architecture as popularized by the OMG.

3.1.2 Model Finding and Type Inference

The type/instance relation consists of three components: the model, the type model, and
the type mapping. For any combination of these three, it is possible to define whether it
is a valid typing relation or not. One cannot be altered without updating the others. It is,
however, a common operation to change the model (i.e., normal modelling), the metamodel
(i.e., update the language), or even the type mapping (i.e., retype). Due to this strong
relation between the three of them, even a minor change requires an update to the other two,
which is tedious. For this reason, automated ways exist of automatically filling in the model,
metamodel, or type mapping. We present the use cases of each of these individually.

The simplest is the automated generation of a conforming model, which is often called
satisfiability analysis [130, 256]. For a given metamodel, instances are generated, which
are subsequently checked by the conformance relation. In case of satisfiability analysis,
this allows users to find out whether or not their type model is actually satisfiable (i.e.,
has possible instances). If no instances are found, it means that the type model is overly
restrictive. If some instances are found, these can be used as example models, or to
prove that instances are possible. Potentially, partial models can be passed along to the
search [256], which the algorithm would then attempt to auto-complete, thus creating
conforming models [27, 227]. In case of multiple conforming models, auto-completion
would require additional information on which one to take.

Another frequently used operation is the generation of a type model to conform to [244].
Exploratory design, or freehand sketching [148], might happen without the advance creation
of a type model, with only simple figures representing the model. Similarly, the type model
might be overly generic and not really constrain the model too much.

Finally, the type mapping between the model and type model is the third part that is required.
While this might seem a less delicate operation than the previous two, it is the mapping
between the two that gives an actual meaning to both constructs. An incomplete type
mapping can arise when the metamodel or model has been updated without also updating
the other. These situations are commonplace in language evolution [197, 266], where
either can evolve independently. In general, a pre-existing type mapping can be used as a
starting point, but in the limit, this approach would also work if no initial type mapping is
offered.



38 CHAPTER 3. STATE OF THE ART

Figure 3.3: Three different classification dimensions: ontological, linguistcal, and physical.
All dimensions are orthogonal to each other.

3.1.3 Multiple Dimensions

Up to now, we have only taken into account a single dimension of conformance. While it
seems logical that a model conforms to its metamodel, it can do so in multiple dimensions
simultaneously [31, 137]. We distinguish three different dimensions: physical, linguistic,
and ontological. Our terminology is similar to that of [35, 295, 322], but in conflict with
the one originally defined in the Orthogonal Classification Architecture (OCA) [32]. Each
of these relations is discussed next. An overview is shown in Figure 3.3, where all three
dimensions for the same model are visualized.

The physical conformance relation defines how a model is physically represented in the
tool. For example, any kind of model (i.e., a Petri Net place, a Statechart state, . . . ) will, in
the tool, be represented as an object in some programming language (e.g., Python, Java).
This classification has nothing to do with the domain, and is purely geared towards the
implementation. As the physical conformance dimension is part of the tool, its type model
is hardcoded and cannot be modified. It is a necessary dimension, as each element of the
model needs to be physically persisted one way or the other.

The linguistic conformance relation defines the type model of the model elements as we
have seen in previous sections. For example, a Petri Net place instance conforms to the
Petri Net Place class in the type model. Contrary to the physical conformance relation,
the metamodel is yet another model, which simply acted as a type model in this specific
context. Both the model and type model are therefore modifiable.

The ontological conformance relation defines the properties which the model fulfils. While
this is seemingly different, as there is no longer a notion of structure, it is still said that a
model can conform to a property. For example, a Petri Net model can conform to the safe
property. Contrary to the previous conformance relations, ontological conformance takes
into account the semantics of the model, instead of only the structure.

For each dimensions, it is possible for there to be multiple type models simultaneously.
In the physical dimension, a model can conform to two different type models in case of
different representations for the same model. In the linguistic dimension, a model can
conform to two different type models if one is more generic than the other, in which case
this helps reusability [83]. In the ontological dimension, it is normal that a model can
conform to multiple distinct properties, such as safeness and deadlocking [322].



3.1. LANGUAGE ENGINEERING 39

Director : Creator

name : string @ 1

oscars : int @ 1

Spielberg : Director

name = "Steven Spielberg"

oscars = 3

E.T. : Movie

name = "E.T."

Book : Product

VAT = 6
name : string @ 1

the_shining : Book

name = "The Shining"

King : Author

name = "Stephen King"
pen_name = "Richard Bachman"

Class

Movie : Product

name : string @ 1

VAT = 21

Author : Creator

name : string @ 1
pen_name : string @ 1

Product : Class

VAT : float @ 1
name : string @ 2

Creator : Class

name : string @ 2

Figure 3.4: Multi-level modelling.

3.1.4 Multi-Level Modelling

The four-layered architecture is a popular modelling architecture, but not the only one.
Of the four layers of the four-layered architecture, only two are modifiable (M2 and M1),
which can be seen as overly restrictive. Multi-level approaches [33] allow the number
of layers to grow unbounded. Despite not being as commonplace as the four-layered
architecture [82], multi-level modelling is particularly useful when normally the type/object
pattern [33, 126] would be applied, to handle dynamic types [81], or for the execution of
models [26]. While there are several other potential solutions to these problems, such as
powertypes [212], multi-level modelling is considered to be more elegant, as there are no
layer-crossing inheritance links. Multi-level modelling has proven to be a thriving research
direction with many different directions and new concepts [23].

Multi-level modelling popularizes the idea of deep instantiation, where an element cannot
only be instantiated once, but multiple times. The distinction between classes and objects
also becomes blurred, as all (except the top and bottom level) model elements have both
an instance and a type aspect. As a result, the merger of the two is called clabject (CLAss
oBJECT), which replaces the previous classes and objects. Facilities are offered to have
elements influence instances several levels down, which is called deep characterization.
Through the use of potency on clabjects [31] and associations [25], restrictions can be made
that will propagate several instantiation layers down.

An example is shown in Figure 3.4. Here, we notice that there are three user-modifiable
levels, instead of two. This is useful to define the notion of a Product and Creator, which is
recurring in several domains, such as books (left hand side) and movies (right hand side).
These different domains all have a notion of VAT and name. The VAT, however, is strictly
related to the domain (e.g., books), and must therefore be defined for the domain itself. This
is done through the potency (the @ 1 notation), meaning that the attribute must be defined
in the layer below. The name, however, dependends not on the domain, but on the instance.
It is therefore given a potency of two (the @ 2 notation), meaning that the attribute must be
defined two layers below (i.e., at the instance level). By definining these attributes at the
topmost layer, we are certain that all instances have the correct set of attributes.



40 CHAPTER 3. STATE OF THE ART

Strict Metamodelling String metamodelling [20] is of particular interest in the context
of multi-level modelling, where it states that only the conformance relation can cross layer
boundaries. Levels can thus be inferred [169], with each level being completely specified
by only looking at the type model one level above. Despite its elegance, it is claimed to
be too strict for several applications [66, 230], in particular for enactment [138], and with
powertypes [82]. Not applying strict metamodelling is called loose metamodelling [138],
where there is no constraint whatsoever on the levels at which models reside, and is
implemented in XMF-Mosaic [66]. While solving the problems of strict metamodelling, all
advantages of strict metamodelling, in particular its strong notion of levels [23], are gone
as well.

Summary
In summary, language engineering, and in particular the more theoretical notions of abstract
syntax, is an active research area. We focussed on the instantiation and conformance
relation, which are the most important relations between models: when does a model
conform, and what does it mean if this relation holds? Subsequently, we briefly presented
alternative ways of determining such conformance relations, either by automatically finding
instance models or by infering the type of instances. Further dimension to conformance
were presented in the context of the Orthogonal Classification Architecture (OCA), which
describes three different dimensions: physical, linguistic, and ontological. We briefly
mentioned the growing domain of multi-level modelling, where the meta-hierarchy is no
longer restricted to four layers, and the controversy over strict metamodelling. Note that
language engineering encompasses far more than only abstract syntax, such as concrete
syntax and the usability of languages. Nonetheless, only abstract syntax is of interest for
the remainder of this thesis.

3.2 Activities
Different types of activities exist, for each of which there have been several research direc-
tions. In this thesis, we consider the two most popular approaches: model transformations
and procedural code.

3.2.1 Model Transformations
Research on model transformations is often focussed on different dimensions of their
usability.

The first dimension is making model transformations easier to define. Examples in this
direction are through the use of familiar concrete syntax (e.g., through RAMification of the
language [171] or by reusing existing modelling environments [9]). Model transformation
by example [153] is an alternative way of specification, where the transformations are not
specified directly.

A second dimension is the reusability of model transformations. One example is intent-
based reuse [248] focusses on the intent of the transformation, instead of on its typing
model. Another is the use of typing requirement models [78], which are models that
explicitly describe the requirements that the transformation needs from the source and



3.3. PROCESSES 41

target metamodels in order to obtain a transformation with a syntactically correct type.
Yet another approach focusses on structural heterogeneities, which can be automatically
resolved through a flexible binding [332].

A third dimension is the efficiency of model transformations. Novel techniques are intro-
duced such as activity (using locality and domain-knowledge) [92, 151], incrementality
(storing and reusing previous matches) [105, 274, 282], and model-sensitive search plans
(optimize search plans based on expected performance on typical instances) [324].

3.2.2 Procedural Code
Procedural action code is another popular way of defining model activities. Such languages
look similar to existing programming languages, and are indeed often strongly related. This
has advantages, such as integrating Java code directly into models, but also disadvantages,
such as everything being Java, thus offsetting many benefits of modelling.

Modelling-specific procedural languages have native constructs for common model man-
agement operations, such as getting all instances of a class. Examples of such languages
are OCL [3], EOL [164], and Kermeta [201]. OCL was designed as a side-effect-free
functional constraint language, allowing efficient implementation techniques (e.g., lazy
evaluation [280]). EOL was designed as a model management language, targetted at
manipulating models and their relations [164]. Several related languages were created,
based on the Epsilon platform, such as for model comparison (ECL [163]), model merging
(EML [165]), and code generation (EGL [238]). Kermeta was designed as an executable
statically-typed object-oriented meta-language [201]. Its semantics was (partially) formally
described [16], and later on concurrency was added [174].

In the domain of multi-level modelling, deep constraint languages [24] (e.g., Deep-
OCL [152]) have emerged. Such languages have built-in notions of potency and deep
meta-models, but can also distinguish between linguistic and physical attributes (e.g., the
name attribute can specify the internal physical “name” attribute, or the domain-specific
attribute “name”).

Summary
We distinguished two types of activities: model transformation and procedural code. Model
transformation is often touted as the more user-friendly approach, though further research
is needed to make them more generally applicable (e.g., for transformation libraries),
make them easier to define, and to increase their performance. Procedural code does
not encounter these problems, as it is a closer map to the actual code implementing the
execution. Nonetheless, procedural code is mostly targetted towards programmers and
might therefore not be as intuitive for domain experts.

3.3 Processes
Process models describe the often complex workflows of today’s systems. Process models
can be defined as follows:

Process models are processes of the same nature that are classified together into a model.
Thus, a process model is a description of a process at the type level. Since the process



42 CHAPTER 3. STATE OF THE ART

model is at the type level, a process is an instantiation of it. The same process model is
used repeatedly for the development of many applications and thus, has many instantia-
tions. [234]

Process models define how domain-specific models are used and which activities operate
on them. Depending on the formalism, the process can be analysed or enacted [214].
Through enactment, the engineering services are orchestrated, enabling a higher level of
automation. Optionally, activities can be annotated with information on their execution,
such as computation time, which domain experts must perform the manual activity, and
so on. Apart from control flow, specifying which activities are to be executed, data flow
is also modelled explicitly, specifying which models the activities operate on. Activities
are either manual or automated (e.g., model transformation or procedural code), and can
optionally rely on external (engineering) tools as well.

Being an active research domain, many process modelling languages have been defined
for software development by the process engineering community. A notable examples
is OMG’s Software Process Engineering Metamodel (SPEM) [1], which is a generic
framework for expressing processes with generic work items. UML4SPM [37] further
adding execution support to SPEM2 with concepts and behavioural semantics. Similarly,
Chou et al. [64] present a language based on UML class diagram and activity diagrams,
which they map to a low-level process. A comparison of several process modelling
approaches and languages can be found in [38] and [139]. Similarly, Business Process
Model and Notation (BPMN) [2] is a standard by the OMG focussed on business process
modelling, which provides a graphical language representing a flowchart. Its primary goal
is to provide a syntax that is intuitive for business users, while still representing sufficient
technical details for the technical users.

In the remainder of this thesis, UML2.0 Activity Diagrams are mostly used, which have
been evaluated as a process modelling technique [241]. The conclusion was that there
was very good support for control- and data flow modelling, though there were lots of
limitations for resource- and organiation related aspects. Resource- and organizational
aspects of the language are less important for our purposes, and as such we have used (a
subset of) Activity Diagrams as process model in this thesis.

3.4 Megamodelling
Megamodelling was originally introduced by Bézivin et al. as “modeling in the large,
establishing and using global relationships and metadata on the basic macroscopic entities
(mainly models and metamodels), ignoring the internal details of these global entities” [42].
Several definitions can be found in the literature [41], though they all mostly mean the same:
a megamodel is a model describing the relations of other models. The FTG+PM [186] can
also be seen as a megamodel, as the formalisms and objects it refers to are other models
that exist in the tool.

Megamodels have a variety of uses, such as to store meta-data (e.g., inconsistency in-
formation [76] and dependencies [225]) or to be used for model management (e.g., de-
velop complex transformations on a global level [231]). For example, MMINT (formerly
MMTF [243]) is a model management framework based on megamodelling [100], with
support for operations such as differencing, slicing, matching, and merging [246]. MMINT



3.5. MODELLING AS A SERVICE 43

explicitly stores metadata in the megamodel, using it as a registry for models and metamod-
els [44].

3.5 Modelling as a Service
With the increasing number of (meta-)modelling tools, the need for model repositories as
central model stores is becoming more and more evident [43, 172]. Model repositories are a
necessity with collaboration, where multiple (geographically distributed) users collaborate
on a single model. This naturally leads to Modelling as a Service (MaaS) [97], where
models and all activities on them are offered by a server, to which multiple clients connect.
Such software is commonly referred to as groupware [118], and has many concerns (e.g.,
network management, synchronization, awareness, and shared workspaces), many of which
are active research domains in the context of modelling.

Another reason to rely on model repositories, and MaaS in general, is that models become
too large for a single system to handle. Many modelling tools are more and more evolv-
ing towards a thin-client setup [125, 273], where all computation is done on the server.
For example, AToM3 [86] has evolved to AToMPM [273], GME [175] has evolved to
WebGME [192], and DPF [173] also has a WebDPF [228] variant.

3.6 Tool Comparison
After explaining and motivating the goals of this thesis, it is important to highlight that
currently no foundation for MPM exists in the literature. We evaluate several relevant tools
for their support for these research domains that make up Multi-Paradigm Modelling, as
desired in this thesis. As MPM combines different areas of research, the set of considered
tools is necessarily rather diverse. While many tools exist in each individual domain, only
several were considered here due to their relevance for some particular aspect of MPM.
Although not all tools were considered, to the best of our knowledge, no tool exists that
combines all these features.

Most of the mentioned tools are prototypes in one of the aforementioned research domains,
and are therefore highly specialized. Table 3.1 compares the tools, based on our experiences
with and knowledge of each tool. Note that this is necessarily a snapshot, and that tools
might add new features in the future. For example, AnyLogic added modelling as a service
several months before this thesis was written. While this specific example was included, it
is very well possible that we are unaware of specific features in tools. Nonetheless, this
does not invalidate our claim that none of these tools support all of the desired features, as
all considered tools are missing out on multiple features. Further detailed information on
each tool is presented next.

AnyLogic AnyLogic [6] is a modelling tool with a primary focus on simulation (i.e.,
activities). It does not support language engineering, as it is not possible to create new
languages: only pre-defined languages can be used. Three simulation languages are
supported: discrete event, agent-based, and system dynamics. For these three languages,
built-in activities are defined for their simulation. There is no support for processes, nor for
megamodelling. Modelling as a service became available in the latest release of AnyLogic



44 CHAPTER 3. STATE OF THE ART

la
ng

ua
ge

en
gi

ne
er

in
g

ac
tiv

iti
es

pr
oc

es
s

m
od

el
lin

g

m
eg

a-
m

od
el

lin
g

m
od

el
lin

g
as

a
se

rv
ic

e

AnyLogic [6]
AToMPM [273]
BPMN [2]
Groove [232]
MDEForge [36]
MetaDepth [79]
MetaEdit+ [154]
MMINT [100]
ReMoDD [112]
WebGME [192]

Table 3.1: Tool comparison as to which domains they support.

with AnyLogicCloud [7]. However, support is limited to sharing models and simulating
them.

AToMPM AToMPM [273], or A Tool for Multi-Paradigm Modelling, is a language
workbench with support for many features of MPM. There is full support for language
engineering (using Class Diagrams, though no multi-level modelling) and activities (only
model transformations using RAMification [171]). Other aspects of MPM are only partially
supported or not at all. Process modelling is supported, through a provided FTG+PM
language. And although enactment support is provided using a separate plugin, it is was
not well integrated in the design of the tool. Modelling as a Service is partially supported,
as most computations happen on the server, which is also where the models are stored.
Nonetheless, only the AToMPM browser interface can connect to it, as the communication
protocol and model representation format is non-trivial and undocumented. Collaboration
is supported through model share (share abstract syntax) and screen share (share concrete
syntax as well), although there is no support for user access control management.

BPMN BPMN [2], or Business Process Model and Notation, is a standard for graphical
notation for the modelling of business processes and is a standard by the Object Management
Group (OMG). While BPMN denotes a standard, and not a tool, the standard only relates
to the modelling of processes. Apart from the modelling of processes, and its potential
enactment by a tool, BPMN does not touch upon any of the other dimensions of MPM.
It was, however, included in our comparison, as it is arguably one of the most influential
process modelling languages.

Groove Groove [232] is a graph transformation language and tool. As the description
suggests, most attention is oriented towards activities: graph transformation execution and
state space analysis. Some aspects of language engineering are present, such as defining a



3.6. TOOL COMPARISON 45

grammar, but this is rather restricted compared to more specialised language engineering
tools (e.g., no concrete syntax, no multi-level modelling). It is possible to define (complex)
priorities for the applications of transformation rules, though this is far from actual process
modelling and enactment. All other aspects of MPM (megamodelling and MaaS) are
untouched.

MetaDepth MetaDepth [79] is a meta-modelling tool that primarily focusses on language
engineering, and support for multi-level modelling in particular. It provides extensive
support for language engineering (such as customisable textual concrete syntax [84]) and to
a lesser degree also for activities (primarily action language and model transformations [79]).
Other aspects, such as process modelling, megamodelling, and modelling as a service, are
untouched.

MetaEdit+ MetaEdit+ [154] is a commercial domain-specific meta-modelling environ-
ment. MetaEdit+ is mostly focussed on language engineering, and using these languages to
create new domain-specific models. No support is provided for activities on these models,
neither through model transformation nor procedural action languages. Nonetheless, a
plugin was made to allow for model transformation, through the use of RAMification [301],
though the execution then runs outside of MetaEdit+. No support for processes or meg-
amodels is present either. While MetaEdit+ is a commercial, proprietary tool, it does
implement a SOAP API with which external tools can query and modify the models stored
in the tool. Recently, support was added for model repositories, which can be used to do
modelling as a service, enabling collaboration.

MMINT MMINT [100], or Model Management INTeractive, is a model management
tool based on the Eclipse framework, and was formerly termed the Model Management
Tool Framework (MMTF) [243]. As the name suggest, it is mostly oriented towards model
management and megamodelling. In this domain, it provides collection-based operators to
manipulate an entire graph of related models. Other aspects, such as language engineering
and activities, are of lesser importance here, though some are supported due to its integration
into the Eclipse framework. No attention is payed to aspects such as process modelling
and modelling as a service, although it is stated that they assume the presence of a model
repository.

MDEForge MDEForge [36] is primarily a model repository, which also supports mod-
elling as a service. MDEForge is based on top of the Ecore standard [8], and accepts models
in that representation. While some modelling operations can be done using the underlying
Ecore library, language engineering is not the core focus of MDEForge. It is primarily
intended as a model repository with MaaS capabilities, thereby offering basic language
engineering and activity operations. For example, existing models can be transformed to
other models through the web interface. Since recently, ATL [149] and ETL [166] model
transformations can be uploaded and executed as well [99]. There is no support for the
creation, nor the enactment of processes, nor is there support for megamodels.



46 CHAPTER 3. STATE OF THE ART

ReMoDD ReMoDD [112] is a model repository that is designed to host a wide variety of
models. Given the difficulties on storing models in a variety of representations, ReMoDD
has chosen to lean towards genericity, thereby allowing everything to be uploaded. While
indeed everything can be seen as a model, this generic approach makes it impossible to
operate on the uploaded models: there is simply no way to know how to operate on the
models. Additionally, only a minimal amount of meta-data is available to process or filter
upon, meaning that it is solely a model repository without much operations on it. Apart
from a model repository, there is no support for any other dimension of MPM

WebGME WebGME [192] is an online collaborative language workbench. It mostly
focusses on collaborative modelling, based on model versioning, and it can therefore also
serve as a model repository. While it can be used for language engineering, there are several
limitations (e.g., no custom concrete syntax) which limit its applicability. Noteworthy, it
relies on prototypical inheritance, making it stand out from the rest of the tools. Activities
are only minimally supported, and often only through the use of external plugins. There is
no support for process modelling, nor for megamodelling.

Summary
MPM spans several research domains, all of which have to be incorporated in our tool to
some extent. We described recent advances in language engineering (focussing on confor-
mance and multi-level modelling), activities (both model transformations and procedural
code), processes (and their enactment and analysis), megamodels (with applications for
model management in particular), and modelling as a service (with links to collaborative
modelling). It is not our ambition to implement the state of the art of each of these research
domains in our prototype tool, though it provides the necessary context in which this
thesis is to be placed. Our prototype should be adaptable to handle new developments, at
least conceptually. The provided background in each research domain provides additional
insights in the domain, which are referred to throughout this thesis. We compared the
support of several tools for each of these domains. Unsurprisingly, these tools excel in the
research domain they target (i.e., they implement most of the state of the art), though they
(mostly) ignore other relevant domains to MPM.



Chapter 4

Modelverse Specification

One of the core contributions of this thesis is the creation of a foundation for MPM,
combined with a tool implementation. In this chapter, we describe the various users
and requirements for a foundation for MPM, working in a top-down fashion. Then, a
specification is given for the implementation of the various components that make up our
tool implementation. We term this specification and its reference tool implementation “the
Modelverse”.

4.1 Types of Users

We consider there to be three different types of users, for which our foundation is mainly
designed. For each user, we consider their classification by mentioning their background
and responsibilities. Figure 4.1 presents the meta-hierarchy for a simple Petri Nets example,
highlighting the relevant level(s) for each users.

PTM

my_PN

PN

MMCL

Language

Engineer

Modeller

Modelverse

Developer

Figure 4.1: Three types of users in relation to the meta-hierarchy.

47



48 CHAPTER 4. MODELVERSE SPECIFICATION

simulate
experiment
within context

only study behaviour in
experimental context

Modelling and Simulation
Process

Model Base
a-priori KnowledgeModel

Simulation
Results

Base
Model

System

Experiment
Observed Data

Real-World
Entity

within context

validation

Figure 4.2: The relation between the model and the system. [337]

4.1.1 Modeller
The first type of user is the modeller, representing the majority of users. The modeller
creates a model of a system under study, and has a background in this domain, making
him a domain-expert. Nonetheless, the modeller generally has no or minimal experience
in computer science and programming. Typical modellers are engineers, who model the
system to achieve additional insights in, for example, the behaviour of the system.

Responsibilities The core responsibility of the modeller is to create an accurate model of
the system in question. As modelling requires abstraction [169], it is important to consider
the correctness of the model regarding the properties in question. Figure 4.2 shows the
relation between a model and the system, given some property. In essence, both the model
and the system must return the same response when asked whether a property holds or not.
This is the responsibility of the modeller, who created the model from the system.

Dependencies As the modeller is expected to accurately model the system, this job relies
on good language and tool support. Given that the modeller has no background in computer
science, creating the language naturally falls outside of the modeller’s responsibilities.
Good language support can be described as being clear and concise, having no unnecessary
or missing concepts, having semantics defined, and so on. Tool support is necessary to
allow the model to be created and manipulated (partially) automatically.

4.1.2 Language Engineer
The second type of user is the language engineer. Language engineers design and create
languages used by modellers to model the system. They work at the meta-level, where
they constrain the modellers as to which concepts they can use and how they can use them.
A background in language engineering is required, as well as general knowledge of the
problem domain and computer science. Knowledge of the problem domain allows them



4.1. TYPES OF USERS 49

to meaningfully construct a language that can be used in the domain, which is not overly
restrictive or has missing concepts, and to know what is the expected semantics. Knowledge
of computer science and language engineering is required to create the language, which
often involves some fragments of general purpose programming languages, for example to
define constraints over the language or to define operational semantics.

Responsibilities The core responsibility of the language engineer is to create usable
languages, which are intuitive for the modeller to use. The language engineer thus works
in function of the modeller, and has to ensure that the modeller can use this language to
correctly model the system. This requires the definition of abstract and concrete syntax,
but semantics as well. Abstract syntax design requires an analysis of the problem domain
to reveal the various concepts and their relations, though sketch-based approaches also
exist, which construct the abstract syntax from a set of example instances [183]. Concrete
syntax design can use existing guidelines [198], though will require significant evaluation.
Semantics must also be defined, (efficiently) implementing the meaning of the language as
it is also understood by the modellers.

Dependencies Just like the modeller, the language engineer depends on tool support for
all its responsibilities. In contrast to the modeller, however, the language engineer requires
methods to create new languages, which can be loaded and used by the modellers. To
define the semantics, language engineers depend on tool support for different specification
languages. Language engineers also depend on the existence of a meta-language, although
this is essentially also specified by (another) language engineer.

4.1.3 Modelverse Developer
The final group of users considered are the developers of the MPM tool itself. While not
users in the same sense as the modeller and the language engineer, they are also required to
use their own tool. They are in the minority, as only a select group of people will have to
develop the tool. Modelverse developers have a strong background in computer science,
particularly in programming, as they have to know all about the nuts and bolts of the
tool.

Responsibilities The core responsibility of tool developers is to ensure a bug-free en-
vironment that fulfills the needs of the other users of the tool (i.e., the modeller and the
language engineer).

Dependencies The tool developer depends on the lower level language that was used for
the implementation of the tool, such as C++ or Python. These languages and their tools,
such as interpreters, compilers, and debuggers, are all used by the tool developers. In the
context of this thesis, we will not go deeper into this.

Summary
We considered three types of users for a foundation for Multi-Paradigm Modelling. The
modeller models an existing system using a provided language, aiming to develop a correct



50 CHAPTER 4. MODELVERSE SPECIFICATION

model with respect to some properties. The language engineer creates the languages and
semantics for the modeller to use, aiming to make it maximally usable for the modellers.
The Modelverse developer creates all required tooling and libraries for all other users to
use, aiming to do so without bugs and efficiently.

4.2 Requirements
A foundation for MPM must handle all aspects of MPM, both explicitly mentioned in the
definition and implicitly caused by the implications of these explicit requirements. Due
to the implications of MPM (e.g., having multiple domain experts, each possibly using
a domain-specific tool), it becomes necessary to design the tool as a kernel for model
management. Additionally, the presence of multiple users naturally implies its nature as a
model repository. The actual tool can therefore be described as a Multi-Paradigm Modelling
kernel and repository. We work top-down in listing our requirements, starting from the
need for an MPM tool, going to a set of high-level requirements. In the remainder of this
thesis, we link back to these requirements and specify how they were satisfied.

For each requirement, we put it in the context of an example: the power window case study
The power window example consists of a simple electronically controlled window of a car.
Users control a button (the environment), which can be in three modes: up, down, or neutral.
This button is connected to a controller (the control), which translates the keypresses into
commands to the engine responsible for window movement. The window itself is raised by
a wormgear (the plant), which can also be in three modes: up, down, or neutral. While there
is an intuitive mapping between the controls and the window behaviour (e.g., when the
up button is pressed, the window should go up), there are some corner cases or additional
requirements. In the context of MPM, a power window is often used, as it is relatively
minimal and easy to understand, while still posing many of the challenges faced in more
general MPM problems [91, 200]. We focus on the verification aspect of the power window:
we want to make sure that when an object is inserted through the window, the window will
never exert a high power (i.e., keep going up).

While we cannot guarantee that this list of requirements is complete, we later on evaluate
the Power Window case study on a tool implementing all these requirements.

4.2.1 Multi-Paradigm Modelling

The first few requirements considered are those that are explicit from the definition of MPM.
MPM combines at least three research domains [316]: language engineering, activities, and
process modelling, each resulting in a requirement.

Language Engineering

The first requirement considered, is language engineering. Specifically, this means that
domain-specific languages and models can be created and manipulated, such that modellers
can make use of the most appropriate formalisms.

Requirement 1: New domain-specific languages and models in these languages must be
creatable.



4.2. REQUIREMENTS 51

Why? This requirement is explicitly present in the definition of MPM, which requires
“the most appropriate formalism(s)”. As the most appropriate formalism depends on the
domain, and is likely specific to it, this naturally implies the need for Domain-Specific
Modelling (DSM) and Domain-Specific Modelling Languages (DSML) support.

Power Window For the power window case study, language engineering makes it possi-
ble for each type of modeller to use a domain-specific formalism. Indeed, the plant and
controller are modelled by a plant engineering and control engineer, respectively. Both
types of engineer have a different background and will want to use a different representation.
Otherwise, they all would have to resort to creating low-level models directly, which is far
from their area of expertise and the problem domain. Additionally, different goals require
different formalisms to be used. For example, for analysis all modellers would have to
create a model in the Petri Nets formalism, and then for simulation they would have to
create a different model in the CBD formalism. Not only are the modellers likely unfamiliar
with those formalisms, but there is also no guarantee that both models represent the same
system, as there is no relation between the Petri Nets and CBD model.

Activities

The second requirement considered, is modelling and execution support for activities.
Specifically, it must be possible to define an activity that takes a set of models as input, and
returns another set of models as output. An activity might thus create new models or delete
existing models, as is required when translating from one formalism to another, or might
update a model in place, as is required when simulating a model. There is a distinction
between manual and automatic activities: where automatic activities execute completely
automatically (i.e., loading the models, performing the activity, writing out the changes),
manual activities require some kind of user intervention. Even for manual activities, all
required input models are loaded automatically, just like the languages that can be used to
model with.

Requirement 2: Activities must be specifiable and executable in many different formalisms.

Why? This requirement stems from the need for the most appropriate formalism(s) in
the definition of MPM. Indeed, the use of domain-specific languages can only come to full
fruition if these models have a semantics, which is given through activities. Additionally,
the use of the most appropriate formalism(s) also reflects on the activity specification. For
example, when constructing the reachability graph of a Petri Net model, this is ideally done
in an operational language, as several algorithms for that exist already. Conversely, when
translating between two languages, this might be ideally done using a declarative model
transformation.

Power Window For the power window case study, this implies the need for activities
to map between different formalisms. On one hand, we want to define activities that
map models in the domain-specific formalisms to models in a general-purpose formalism
(e.g., Petri Nets), thereby implementing denotational semantics (through declarative model



52 CHAPTER 4. MODELVERSE SPECIFICATION

transformations). On the other hand, we also want to define activities on these general-
purpose formalisms to give them semantics, such as computing a reachability graph (through
operational action code).

Processes

The third requirement considered, is process modelling and enactment support. Specifically,
it must be possible to model a process in a process modelling language, such as Activity
Diagrams or BPMN [2], taking into account control flow and data flow. This process can
then be automatically enacted by executing the activities (manual or automated) on the
correct models, in the correct order, potentially concurrently.

Requirement 3: Process models can be created and enacted using previously defined
models.

Why? This requirement stems from the need for an explicitly modelled process in the
definition of MPM. This was already implied in the model all relevant aspects, even though
the process is indeed not part of the built system, but was made explicit in later revisions of
the definition. To maximise the usefulness of the process model, enactment support should
also be provided.

Power Window For the power window case study, this implies the need for an explicitly
modelled process, as is given in the FTG+PM. This FTG+PM can then automatically
be enacted, thereby executing activities automatically. Indeed, this makes it that we
merely have to enact the FTG+PM termed “verify power window”, after which the tool
automatically prompts the various users in the correct order, hiding all lower-level languages
(such as Petri Nets) from the modellers. Manual activities still require modeller intervention,
though the correct languages and models are already pre-loaded where possible. Automated
activities happen in the background, and possibly concurrent to other activities, completely
invisible to the modellers. For the previously defined FTG+PM (Figure 2.22), this means
that not a single modeller is exposed to the intermediate Petri Nets and corresponding
reachability graph.

4.2.2 Kernel

The second aspect of the foundation for MPM that we will consider, is its use as an MPM
kernel. An MPM kernel is characterized as a service (Modelling as a Service [97]) that
coordinates the interaction of different individual entities, particularly in their use of shared
resources. For an operating system, these entities are processes and individual threads.
For an MPM kernel, these entities are different clients (user interfaces, responding to user
input), different activities spawned by these clients, and different external services. All
these entities have to share the limited resources available at the server, such as computation
power, storage, and network. MPM implicitly raises the need for a kernel, as it requires
multiple domain experts to interact and cooperate with one another.



4.2. REQUIREMENTS 53

Multi-User

The fourth requirement considered, is support for multiple users. There can be multiple such
users, all connecting simultaneously from geographically distributed locations. Users don’t
interact directly with the MPM kernel, but should be guided by a (user-friendly) interface.
Through these interfaces, users are able to perform Modelling as a Service operations, such
as creating new models, removing models, executing activities, enacting processes, and so
on. While doing all this, fairness should be guaranteed, such that, for example, no single
user can hog all computational resources or memory. This is particularly important with
the execution of activities, which can take a decent amount of time (e.g., long-running
simulation) and memory (e.g., state space analysis).

Requirement 4: Multiple users must be allowed to use the same tool simultaneously,
potentially from geographically distributed locations, equally sharing resources such as
storage and computation.

Why? Modelling all aspects of the system explicitly using the most appropriate formal-
ism(s) naturally implies that domain experts will model themselves, instead of having
single all-purpose modeller. To optimize the process, it is only natural that multiple such
modellers are operating concurrently, meaning that multiple domain experts (from different
domains) work concurrently. As all these types of modellers are equal, no single modeller
should ever occupy all shared resources.

Power Window For the power window case study, this makes it possible that the various
domain-specific modelling operations (e.g., model the plant and the controller) can occur
concurrently by different users (e.g., a plant engineer and a control engineer). Indeed, in
our example FTG+PM (Figure 2.22), no less than five domain-specific models were being
created concurrently, all by potentially different users. In this context, it is only natural that
for example the plant engineer can not hog all computation resources, causing the control
engineer to be stuck.

Multi-Service

The fifth requirement considered, is support for multiple external services. Specifically,
activities can be defined as being “external” automatic, meaning that they interact with
some external tool, implementing (parts of) the desired functionality. No constraints are
placed on these external tools, as they might be oblivious of MPM and even modelling in
general. Additionally, no constraints should be placed on implementation restrictions of
such tools: they might even run on a different platform, and should be completely black-box
to our foundation for MPM. It should be possible to connect to such external tools and use
them in a (preferably) automated way.

Requirement 5: Multiple external (proprietary) services must be able to connect and operate
concurrently, potentially from geographically distributed locations.

Why? This requirement stems from the support for various domains, many of which have
their own domain-specific tools and solvers. While it is technically possible to reimplement
all such features in a single tool, this is not be a viable option. Many of these algorithms



54 CHAPTER 4. MODELVERSE SPECIFICATION

have taken many man years to develop, resulting in advanced features and high performance.
It is therefore important to reuse existing tools and solvers as much as possible, instead of
reinventing the wheel.

Power Window For the power window case study, this implies that external tools can
be used to perform some activities. For example, the reachability analysis on the Petri Net
model is non-trivial to re-implement, and certainly not if performance is a concern. Luckily,
many efficient implementations exist in dedicated tools, such as LoLa [254]. Through
the use of external services, it becomes possible to define an activity termed “analyse
reachability”, which interacts with LoLa instead of doing the analysis itself.

Multi-Interface

The sixth requirement considered, is support for multiple user interfaces, possibly imple-
mented for different visualization formats and implementation platforms, using different
programming languages and libraries. This merely requires that client and server should not
be overly coupled, making it possible to switch out any of them for another implementation.
This results in the need for a simple and intuitive interface, as well as some unified data
representation. Nonetheless, this data representation should not make assumptions of the
client, as there might exist a visual client (with notions of symbols and figures) and a
textual client, both of which should be able to offer the same functionality. As such, this
requirement goes beyond purely technological restrictions.

Requirement 6: Multiple different user interfaces must be able to connect simultaneously,
each one possibly developed with different languages and libraries.

Why? This requirement stems from the support for various domains and users with
different backgrounds: each user has his/her prefered tool and type of interface. There is
for example the distinction between textual and visual interfaces, with some research on
figuring out which is the “best” format [128, 219]. Nonetheless, as reflected in the definition
of MPM, we consider that there is at most a “most appropriate” format, depending on the
domain and user. For example, while visualization is most appropriate for architectural
plans, textual representations might be better suited for a procedural action language.
Similarly, domain experts might want to stick to the tools they are familiar with, making it
necessary that these tools can be extended to communicate with our MPM kernel.

Power Window For the power window case study, this implies the need for multiple
types of interfaces, possibly for the different types of users. Depending on domain expert
preference, the visual or textual representation of the models under consideration can be
considered. For example, a textual representation is appropriate for the requirements model,
whereas visual models might be more appropriate for a control model. Similarly, tool
preference depends on the background of individual users: the plant engineer is likely
familiar with other tools than the control engineer.



4.2. REQUIREMENTS 55

4.2.3 Repository
Another set of requirements comes from the need for repository functionality. Due to the
nature of MPM, where multiple users are collaborating on a single system, there is a need
to share modelling artefacts, such as models, metamodels, and activities. While Modelling
as a Service considered computation, a repository considers data. Indeed, one can occur
without the other, as seen in for example ReMoDD, which acts as a repository, but does not
support MaaS. The repository aspect of our tool considers three additional requirements that
should be imposed: enabling sharing of data, permissions, and managing the data.

Share Models

The seventh requirement considered, is support for model sharing. Specifically, models
created by one user might be visible to other users as well, such that they can interact (e.g.,
one user uses the models of the other as input). While we state that models can be shared,
this naturally extends to languages and activities as well, as all of these are to be represented
as models in an MPM context.

Requirement 7: Models (in a broad sense) must be sharable between users.

Why? This requirement stems from the various users who need to collaborate (see
Requirement 4 (Multi-user)), thereby needing to share models. Additionally, when
enacting a process, all involved users must be able to access the used models, languages,
and activities that are assigned to them. This requirement is therefore tightly interleaved
with many of the other requirements.

Power Window For the power window case study, this implies that the different types
of modellers must have access to their own models (e.g., the plant engineer must be able
to access the plant models). While initially the models are created from scratch, it might
be that a different plant engineer is called in to do the second iteration (e.g., refinement).
Similarly, the activity merging the different Petri Net models should have access to all
models, but also to the semantics of this merge, which is stored as a model as well. Many
of the languages and activities involved in this process, such as (Encapsulated) Petri Nets
and their analysis, are reusable for other projects as well.

Access Control

The eighth requirement considered, is support for access control. Specifically, while
models can be shared among users, they must be augmented with meta-data on permissions,
signalling what type of access is provided to other users and groups (no access, read-only,
or write). To simplify access control management, this can optionally make use of a
group-based access control system, where users can be a member of a group, thereby
inheriting all permissions of that group as well. Apart from readability and writeability, the
notion of executability is also important: an efficient algorithm might have to be protected
from inspection (i.e., made unreadable), although it should still be executable (e.g., by
customers).

Requirement 8: User access control must be present to regulate sharing of models (in a
broad sense) between users and groups.



56 CHAPTER 4. MODELVERSE SPECIFICATION

Why? This requirement stems from the various modellers, possibly from different compa-
nies and with access to different parts of intellectual property. Despite the requirement for
model sharing, many organizations do not wish to share their intellectual property with too
broad a user base. Such organizations would therefore be relunctant to adopt our foundation
for MPM if there were no concept of access control built-in.

Power Window For the power window case study, this makes it possible that the plant
engineer only has access to the plant model. Indeed, there is no functional reason as to why
a plant engineer must access the control models. In our FTG+PM, it is even possible to
make the combination operate on a black box: the intermediate Encapsulated Petri Nets
might be the only artefacts readable to the integrator. This maximally restricts access to
intellectual property, though of course depends on how easy it is to reverse engineer the
domain-specific model from the Petri Net. More generally, such restrictions also apply
between different organizations, as all use the same service: plant engineers from company
A should not have access to plant models from company B.

Megamodelling

The ninth requirement considered, is support for megamodelling. Specifically, links can
be created between models to highlight a specific relation between them, such as model
management operations [100] or consistency [75]. Additionally, megamodelling is often
used to store meta-data about models, such as their access permissions or traceability links
(e.g., automatically generated out of some other model).

Requirement 9: Megamodelling must be supported, allowing for meta-data on models and
links between them.

Why? This requirement stems from the various models, languages, and activities used
due to the nature of MPM. Many such models have relations to one another, making this
additional information useful during the development process: they can be used to find
related models [36], maintain consistency, used as information for model management
operations, and even for model versioning [53].

Power Window For the power window case study, this implies that relations between
the various languages can be stored and used. For example, reachability analysis result
need to be mapped back to the domain-specific level, where they utilize the traceability
information stored during the various translations. Additionally, the activities that rely
on model transformation are instances of a RAMified metamodel, being the merger of all
involved metamodels. To ensure consistency, and make it possible to update this language,
there is a link from this RAMified metamodel to a merged metamodel, and from this merged
metamodel to all involved metamodels.

4.2.4 Non-Functional Requirements
Like all software, there are various non-functional requirements relevant to a foundation
for MPM. Nonetheless, most of them are generally applicable to most pieces of software,



4.2. REQUIREMENTS 57

such as performance, dependability, and maintainability. As this is not specific to MPM,
we mostly ignore such requirements throughout this thesis, as they are out of scope. One
non-functional requirement, however, is of particular importance to MPM, and is discussed
next: portability.

Portability

The tenth and final requirement considered, is portability. Specifically, all aspects of our
foundation, ranging from parts of the tools to the models developed in the tool, are to be
fully portable between implementation platforms. We consider implementation platforms
in the broad sense, including used programming language, used operating system, and
used hardware. In essence, our foundation and its implementations should not be grafted
on any aspect that is difficult to port among platforms, such as programming language
libraries.

Requirement 10: All aspects of our approach must be fully portable between different
implementation platforms.

Why? This requirement stems again from the appropriateness that is all-important in
MPM. Many formalisms include a notion of “code fragment”, which is some executable
text, for example in Python. Binding such code fragments to a specific programming
language makes it difficult to provide support for it. On the tool side, this implies that the
foundation can only be implemented using Python, and that all implementations must be
done in the Python programming language. On the model side, this implies that the tool
should have execution support for Python, which hints at a tool implementation in Python.
Using a complex general-purpose language therefore has significant repercussions on all
aspects of the foundation. As such, we opt that our approach should not be based on a
complex general-purpose language.

Power Window For the power window case study, this implies that our complete model
is to be independent of the language used to implement the modelling platform (e.g., Python,
Java). This includes the procedural action code, which is used to for example compute
a state space or merge together different Petri Nets. By writing this in a minimal though
expressive language, models become independent of the underlying platform.

Summary
We have defined ten requirements for our Multi-Paradigm Modelling foundation, all of
which follow from the definition of MPM and the systems it targets. These requirements
can be summarized as follows:

1. Domain-specific languages and models in these languages must be creatable.

2. Activities must be specifiable and executable in many different formalisms.

3. Process models can be created and enacted using previously defined models.

4. Multiple (distributed) users equally share computational resources.



58 CHAPTER 4. MODELVERSE SPECIFICATION

5. Multiple external (proprietary) services must be able to connect.

6. Multiple interfaces must be supported, possibly using a different platform.

7. Models must be sharable between different users.

8. User access control regulate sharing of models between users and groups.

9. Links between models must be representable and can be manipulated.

10. All developed tool components must be fully portable between platforms.

4.3 Architecture
The presented requirements immediately hint at a client-server architecture to be used for
our prototype implementation. We term our prototype “the Modelverse”, and it will consist
of three individual projects. The client-side component is called the Modelverse Interface
(MvI), providing a user-friendly interface. The server-side component is subdivided in two
responsibilities: computation and storage. Computation will be handled by the Modelverse
Kernel (MvK). Storage will be handled by the Modelverse State (MvS).

As the MvS is only responsible for storage, the interfaces communicate exclusively to
the MvK, which produces required operations on the storage. The MvI will translate
commands by the user to high-level MPM-specific operations (e.g., “create model” and

“enact process’). The MvS merely exposes a minimal graph API (e.g., “create node”, “read
edge”), and can be an existing graph database. The MvK, being the glue between MvI and
MvS, is then responsible for translating the high-level operations of the MvI to low-level
operations of the MvS.

We now describe the full interface of these three components.

Trade-offs During the design of this architecture, various trade-offs were considered
at different levels. For example, different network protocols (e.g., XML/HTTPRequests,
WebSockets, ZeroMQ) and different storage options (e.g., In-memory database, RDF) were
considered. In the interest of space, however, all these alternatives and their trade-offs are
not mentioned here.

4.3.1 Modelverse Interface

The Modelverse Interface (MvI) is any type of interface to the users, which can communicate
with the Modelverse. Its primary use is to make the Modelverse as user-friendly as possible
to the end-user, as indeed this will be the only component that the user interfaces with
directly. In essence, it is any type of program that generates high-level MPM-specific
requests to the Modelverse. The Modelverse operates independent of which type of
interface is used. Some example interfaces are listed next, all of which were implemented
in this thesis.



4.3. ARCHITECTURE 59

Graphical User Interface The first type of interface is a Graphical User Interface (GUI),
for example implemented in TkInter. With such an interface, users have a graphical
depiction of the model they are manipulating using mouse-based interaction. A simple
example would be to modify a model element with a middle-click and remove it with a
control-right click. When these commands are sent to the GUI, the GUI translates this to
a model operation in the Modelverse, after which the Modelverse is contacted to actually
perform the operation.

Textual User Interface The second type is a textual user interface, where users specify a
model in a textual format, such as HUTN notation. With this type of interface, users have a
textual representation of the model in some human-readable notation. This text is subse-
quently parsed and the appropriate high-level operations are sent to the Modelverse.

Programming Language Interface The third type is a programming language interface,
or API, where language bindings are created, for example for Python. This is a simple
type of interface, as the high-level operations are merely made available as a function
in the desired programming language. Upon invoking the function, the corresponding
high-level operation is sent out over the network to the Modelverse, and the return value of
the Modelverse is parsed and ultimately returned to Python. The only task of this interface
thus consists of serializing the (primitive) parameters and deserializing the return value of
the call. Of course, some additional wrapping is necessary, for example to handle different
modes the client is in and to handle potential exceptions.

Console Interface The fourth type of interface that we consider, is a console-like inter-
face. This is the simplest type of interface, as it merely provides a protocol-level view of
the Modelverse. As Modelverse operations are high-level, they can be invoked directly as
well, in a prompt-like way. Such an interface merely requests output from the Modelverse,
and has the option to send in some data. No modelling logic whatsoever is encoded in this
interface.

4.3.2 Modelverse Kernel

The Modelverse Kernel (MvK) is the computational core of the Modelverse and processes
the high-level operations. For each of these operations, semantics is briefly and informally
described to give an idea of the interface made available to the MvI. A complete definition
of what each operation does, can be seen in the models stored in the Modelverse itself.
To process these operations, the stored model(s) need to be modified or queried. All
storage, however, happens in the Modelverse State (MvS), and is therefore external to
the MvK. The MvK thus generates low-level storage operations for the MvS to fulfill the
requested operations. For example, the high-level operation “instantiate node” requires
several low-level operations on the underlying graph: a query is made to check whether
this instantiation is allowed (reading several nodes and edges), the new node is created, the
typing information is updated (again reading and modifying some nodes and edges), and so
on.



60 CHAPTER 4. MODELVERSE SPECIFICATION

Operation Semantics
upload Overwrite the existing model with a new model.
instantiate node Instantiate a new node.
instantiate edge Instantiate a new edge.
attr add Set an attribute.
attr add code Set an attribute with code.
attr del Delete an attribute.
attr name Change the name of the attribute.
attr type Change the type of the attribute.
attr optional Change the optionality of the attribute.
delete Delete an element.
nice list Fetch a pretty-printed list of elements.
list Fetch a raw list of elements.
JSON Fetch a JSON serialized list of elements.
read outgoing Read all outgoing edges of an element.
read incoming Read all incoming edges of an element.
read Read an elements details.
read attrs Read the list of attributes.
read defined attrs Read the list of attributes defined by this class.
types Read the list of available types.
retype Retype an element.
read association source Read the source of an association.
read association destination Read the destination of an association.
connections between Read the connections between two elements.
all instances Read all instances of an element.
define attribute Define a new attribute.
undefine attribute Undefine an attribute.

Table 4.1: Modelling operations in the MvK.

Modelling

An overview of the various modelling operations is shown in Table 4.1. All these operations
operate at the level of a single model, and allow for basic Create-Read-Update-Delete
(CRUD) operations on the model. Some operations, such as read defined attrs, can
be rewritten using other existing operations, but are included nonetheless for usability and
efficiency reasons. Indeed, it is much more efficient to execute a loop at the server side,
than to do the loop at the client side.

Megamodelling

An overview of all megamodelling operations is shown in Table 4.2. In essence, the
Modelverse core data structure is a model itself (i.e., a megamodel, see Section 5.5), and
could be manipulated using the previously mentioned modelling operations. However,
it would not work well to give users (write) access to the complete megamodel, as this
includes passwords and intellectual property. As such, these operations provide privileged
access to only some parts of the megamodel (e.g., the user’s own folders), while protecting
others. For the admin user, who has read/write permissions to the core megamodel, these
operations are technically unnecessary. For unprivileged users, these operations provide the
only way of altering the megamodel, which is sometimes necessary even for non-privileged
users (e.g., create a new model).



4.3. ARCHITECTURE 61

Operation Semantics
model add Create a new model.
model rendered Read all concrete syntax versions of a model.
model types Read all supported metamodels for a model.
verify Verify the conformance of a model.
model overwrite Overwrite an existing model.
model modify Modify an existing model.
model delete Delete an existing model.
model list List all available models in a directory.

Table 4.2: Megamodelling operations in the MvK.

Operation Semantics
transformation between Read all activities between two languages.
model render Render the selected model.
transformation execute Execute an activity.
transformation add MANUAL Create a new manual activity.
transformation add AL Create a new action language activity.
transformation add MT Create a new model transformation activity.
transformation read signature Read the signature of an activity.

Table 4.3: Activity operations in the MvK.

Activities

An overview of all activity operations is shown in Table 4.3. While to the Modelverse
activities are models as well, users will appreciate a more specific interface when creating
activities. For example, when creating model transformations, the various metamodels have
to be merged and RAMified, all of which happens automatically in these operations. As
such, these operations provide all necessary processes to follow when creating or executing
activities.

Processes

An overview of all process operations is shown in Table 4.4. These operations are limited
to executing and reading a process model, as typed by the ProcessModel formalism in the
Modelverse. As a process model is just an ordinary model, conforming to the ProcessModel
metamodel, no additional operations are required. Support for other process modelling
languages could be added by either translating them to the aforementioned formalism, or
by implementing additional functions directly.

Access Control

An overview of all access control operations is shown in Table 4.5. These operations
provide the usual operations for a simple group-based access control policy. As for example

Operation Semantics
process execute Enact a process model.
process signature Read the signature of a process.

Table 4.4: Process operations in the MvK.



62 CHAPTER 4. MODELVERSE SPECIFICATION

Operation Semantics
permission modify Modify permissions of a model.
permission owner Modify the owner of a model.
permission group Modify the owning group of a model.
group create Create a new group.
group delete Delete a group.
group owner add Add owner to a group.
group owner delete Delete owner of a group.
group join Join user to group.
group kick Kick user from a group.
group list List all groups.
admin promote Promote to admin user.
admin demote Demote to normal user.
user password Change user password.
user logout Logout user.

Table 4.5: Access control operations in the MvK.

Operation Semantics
service register Register external code as service.
service get Get data from Modelverse.
service set Send data to Modelverse.
service poll Poll for available data in Modelverse.

Table 4.6: Service operations in the MvK.

in UNIX systems, all models have permissions associated with them as meta-data, which
dictates what are the owner permissions, group permissions, and other permissions. Each
model is associated with a single owner and a single group. Users can be part of multiple
groups. The user that is the owner of the model has the permissions given as owner
permissions. Users that are a member of the owning group have the permissions given as
group permissions. All other users have the permissions given as other permissions. Each
group, additionally, can have a set of admin users, who can manage who is a member of
that group. Apart from that, there are some general operations for account management
(e.g., administrator privileges and password management).

Services

An overview of all service operations is shown in Table 4.6. These operations provide the
necessary interface for external services, which have to communicate with the Modelverse.
As services are likely not (meta-)modelling tools, they have little use of the usual (meta-
)modelling operations. Therefore, the services have more generic set and get operation,
which sends data to a specific activity in the Modelverse, or reads data from a specific
activity in the Modelverse. The Modelverse manages these different activities and their
communication with the outside world.

4.3.3 Modelverse State
The third and final component of the Modelverse is the Modelverse State (MvS). While the
Modelverse Kernel is responsible for the core logic, data storage is the responsibility of
the Modelverse State. The MvS maintains a single graph-like data structure, manipulated



4.3. ARCHITECTURE 63

through a simple CRUD interface. Contrary to existing tools, which sometimes also offer a
graph-like structure, our data structure has no special extensions, such as inheritance [177],
containment [177], or conformance [122]. It is only at the Modelverse Kernel (MvK) level
that an interpretation is given to this graph and its elements (e.g., as an edge that represents
inheritance).

The MvS is the only part of the Modelverse that we did not model explicitly, as it is
purely algorithmic and likely makes use of external libraries. Additionally, for performance
reasons this will likely become a proprietary graph database, which has to be considered
as a black box. As there is no model to refer to, in this case, a precise description of the
MvS interface [305] is given in Appendix A. What follows is a high-level explanation of
the MvS and its interface.

Data representation

Informally, we define the MvS data structure a graph which can have a single primitive
value in a node, and both nodes and edges can be connected using edges. Allowing edges
to connect other edges allows for a more explicit representation, such as type links on
associations. Both nodes and edges can be accessed using a unique identifier.

Self-connecting edges can be problematic for recursive algorithms, which traverse an edge
by going on to the source and target. Therefore, edges can, by construction, only link
elements that already exist. Given that the source and target of edges cannot be changed,
this effectively prevents loops and guarantees that such algorithms will terminate.

Several types of primitive values are supported. Informally, these types are integers, floating
point values, strings, booleans, and action language elements. Action language elements
are the primitives of the action language, which is the core of the MvK execution, discussed
later (Section 5.10). Supported values are If, While, Assign, Call, Break, Continue, Return,
Resolve, Access, Constant, Declare, Global, Input, and Output. None of the value sets
overlap and therefore it is possible to automatically infer the data type.

CRUD interface

An MvS implementation needs to offer the operations defined here, irrespective of its
implementation algorithm or data structure. An implementation does not need to use a
graph representation, as long as the operations return exactly the same result as if this
were the case. We distinguish four types of operations: Create, Read, Update, and Delete
(CRUD). For each set of operations, we define the function signature and the required
semantics.

Create First are the create instructions, causing the creation of new elements in the
graph, thereby extending its size. Each newly created element will be assigned a unique
identifier by the MvS, which is returned. It is this identifier which acts as the handle
to that element in the MvS. An overview of the operations is shown in Table 4.7. The
create dictionary operation is a composite operation for performance.



64 CHAPTER 4. MODELVERSE SPECIFICATION

Operation Semantics

create node Create a new node without value.
create value Create a new node with a value.
create edge Create a new edge between two elements.
create dictionary Create a new dictionary entry.

Table 4.7: Create operations in the MvS.

Operation Semantics

read value Read the value of a node.
read outgoing Read outgoing edges.
read incoming Read incoming edges.
read edge Read source and target of edge.
read dictionary Read dictionary entry by key value.
read dictionary node Read dictionary entry by node.
read dictionary edge Read dictionary edge by key value.
read dictionary node edge Read dictionary edge by node.
read dictionary reverse Read all dictionaries in which it is a value.
read dictionary keys Read all keys of the dictionary.

Table 4.8: Read operations in the MvS.

Read The next set of operations consists of read operations. As there is no information
in non-data nodes, there is no read operation defined on nodes, except for their primitive
data. An overview of the operations is shown in Table 4.8. Noteworthy are the special
read dictionary * operations, which are specifically tailored to frequent dictionary
operations for performance reasons.

Update Even though we implemented a CRUD interface, we do not offer support for any
update operations, mostly for correctness and performance.

Edges cannot have their source or target updated, as updating this has the potential of
creating loops (e.g., an edge referring to itself). While this was impossible to do when
constructing the edge at first, as it is required that its source and target already exist, this
can no longer be guaranteed when the edge is updated. If we were to implement such an
update function anyhow, we would have to do a lot of sanity checking for whether or not
this operation is allowed.

Updating the value of a data node is also not allowed, as this would make read operations
non-cacheable. In case values don’t change, the values of nodes can be cached in the
MvK, meaning we can cut down on requests. Such cache management was also used by
WebGME [191, 192].

Delete Finally there are the delete operations, of which an overview is given in Table 4.9.
After each deletion operation, the resulting graph should be the largest possible subgraph
of the original graph, while still being a valid graph. As such, when an element is removed,
all outgoing and incoming edges are recursively removed as well.



4.3. ARCHITECTURE 65

Operation Semantics

delete node Remove a node.
delete edge Remove an edge.

Table 4.9: Delete operations in the MvS.

Summary
We have defined the three core components of the Modelverse architecture: the Modelverse
Interface (MvI), Modelverse Kernel (MvK), and Modelverse State (MvS). Each component
provides an interface at a varying level of abstraction. The Modelverse Interface (MvI)
interfaces with the user, thereby focusing on usability of the Modelverse. Concretely, oper-
ations in the graphical interface cause various operations to be executed on the Modelverse
Kernel. The Modelverse Kernel (MvK) interfaces with the MvI, thereby focusing on the
computational side of the operation. Concretely, a modelling operation is expanded in a
list of operations on the graph structure stored by the Modelverse State. The Modelverse
State (MvS) interfaces with the MvK, thereby focusing on the storage side of the operation.
Concretely, the graph-based operations are processed internally.

Summary
This chapter has introduced the foundation on which the remainder of this thesis is built.
First, we introduced the three types of users considered: the modeller, the language engineer,
and the Modelverse developer. Second, the definition of MPM was used to distil ten
requirements for an MPM tool, which were explained in the context of the power window
case study. Finally, a high-level architecture was proposed, considering three components:
the Modelverse Interface (MvI), the Modelverse Kernel (MvK), and the Modelverse State
(MvS).





Chapter 5

Modelverse Development using
MPM

With the specification of the components and their interfaces defined, the development
of the components themselves is the next step. While the implementation could be done
in many ways, we have motivated the use of the MPM approach. In this approach, we
model all relevant aspects of the tool explicitly, at the right level(s) of abstraction, using
the most appropriate formalism(s). As such, we describe all aspects of the tool that
implements our foundation for MPM: the Modelverse. For each aspect, we describe its
purpose, motivation for modelling, present (part of) the model, and provide an evaluation
of modelling this part explicitly. We also link back to the requirements to evaluate how
this specific component aids in satisfying the previously defined requirements. Note that
Requirement 10 (Portability) is practically always influenced, as models are naturally
less platform-dependent, and is therefore only considered briefly in each section.

Figure 5.1 presents a detailed overview of the Modelverse architecture, similar to the one
in the specification. The various components that make up the MvI, MvK, and MvS are
mentioned, together with the section where this component is handled. This chapter walks
through this overview, presenting each component in turn. Only external tools and the
graph database are not modelled explicitly, and as such are not considered further in the
remainder of this thesis. Explicitly modelling them would not prove beneficial (e.g., the
graph database) or is simply impossible (e.g., the external tool). This still follows the MPM
approach, as only the relevant aspects need to be modelled, where there is an obvious
advantage of modelling.

Whereas some aspects are relevant to model, the achieved benefits are limited to decreased
development time, and as the contribution is minimal. These are still modelled to reduce
development time or gain additional minor benefits, but are only briefly mentioned and
evaluated in this thesis. These aspects are the Graphical User Interface (Section 5.1), the
wrapper (Section 5.2), the network protocols (Section 5.3), the FTG (Section 5.5), the core
library (Section 5.4), and the task manager (Section 5.11).

Major advantages of explicit modelling become visible in the other aspects, which are
therefore more extensively handled and evaluated in this thesis. The conformance algorithm

67



68 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

GRAPHICAL

USER

INTERFACE

(Section 5.1)

WRAPPER

(Section 5.2)

NETWORK

(Section 5.3)
CORE

LIBRARY

(Section 5.4)

ACTION LANGUAGE

(Section 5.10)

TASK MANAGEMENT

(Section 5.11)

FTG

(Section 5.5)

PHYSICAL TYPE

MODEL

(Section 5.7)

CONFORMANCE

ALGORITHM

(Section 5.6)

NETWORK

(Section 5.3)

GRAPH

DATABASE

MvI MvK MvS

NETWORK

(Section 5.3)

Service

WRAPPER

(Section 5.2)

EXTERNAL

TOOL

FTG+PM

ENACTMENT

(Section 5.9)

SERVICE

ORCHESTRATOR

(Section 5.8)

PERFORMANCE

(Section 5.12)

Figure 5.1: Overview of all components of the Modelverse, together with the section in
which their model is described.

(Section 5.6) allows for multiple different definitions of conformance, allowing different tool
semantics to be emulated. The physical type model (Section 5.7) splits the physical from the
linguistic dimension, allowing flexibility at the implementation level. FTG+PM enactment
(Section 5.9) maps an FTG+PM to an equivalent model, allowing reuse of SCCD semantics
and uniformity. Service orchestration (Section 5.8) models the protocol for external tools,
allowing well-defined access to non-modelled components. Action Language (Section 5.10)
explicitly models execution semantics, allowing platform-independent code synthesis and
documentation. Performance (Section 5.12) models performance of the system, allowing
deterministic what-if analysis and increased performance. We handle each aspects in turn,
going from the user interface to the low-level details of the Modelverse.

Appropriateness When choosing the most appropriate formalism, we have to consider
what it means for a formalism to be “most appropriate”. This depends on a variety of
criteria. Some of these are objective, such as the verbosity of the language, the expected
development time, or the existence of algorithms for that formalism (e.g., reachability graph
construction for Petri Nets). Nonetheless, many subjective criteria exist as well, such as the
familiarity and intuitiveness of the formalism, or the understandability for some specific



5.1. GRAPHICAL USER INTERFACE (GUI) 69

purpose. An important criteria to consider is also pragmatics: how well is the formalism
actually supported in actual tools. While some formalisms might boast huge benefits, they
might effectively be unusable if there is no stable and efficient tool support.

5.1 Graphical User Interface (GUI)
A Graphical User Interface (GUI) is a visual interface to the underlying tool. In our case,
the GUI will be one of the means for users to interact with the Modelverse, in a graphical
way. The other ones being the textual, programmatical, or prompt-based approaches. As
usual, a GUI is mostly concerned with the usability of the underlying program, and not so
much with the actual logic underlying it.

While we only consider the possibility for a GUI here, as this is by far the most complex,
different types of interface are indeed possible, and were modelled, for the Modelverse. For
example, a frequent discussion in the modelling community is about textual versus graphical
modelling [128, 219]. Often this depends on personal preferences and the problem domain
being tackled. For example, procedural code is ideally expressed textually, though an
architectural drawing of a house is ideally expressed visually. We only consider the GUI, as
this is by far the most complex due to the interaction with libraries (e.g., TkInter), timing,
and complex events (e.g., mouse events).

Having a GUI is a critical enabler and a determining factor for usability, although it does
not contribute to the goals of this thesis. As such, only a proof of concept implementation
is briefly considered, although access is provided to all features of the Modelverse.

5.1.1 Motivation
A GUI, or at least some type of user interface, is needed to boost usability. For the
Modelverse, a new GUI is created, which is modelled using SCCD [298], thereby following
the MPM approach. As the primary advantages are related to development time and
portability, we only consider this aspect briefly.

Why a new GUI?

A plethora of graphical interfaces already exist for (meta-)modelling tools, and thus it
might seem wasteful not to reuse any of them. Our GUI is only to be considered as a
prototype implementation, offering all features that the Modelverse has to offer. Other GUIs
are often tightly interwoven with their accompanying back-end, making them difficult to
refactor and couple to the Modelverse. For example, the AToMPM client (JavaScript based)
could not easily be reused, as the operations and model exchange protocol is convoluted
and non-trivial. Similarly, existing GUIs are tailored to the (meta-)modelling tool they
accompany, and therefore have no (preliminary) support for other features. For example,
process enactment requires spawning a new (restricted) editor with a specific model pre-
loaded, receiving a notification when the editor has finished. Such functionality is not yet
supported by any of the tools considered. While these interfaces could certainly be modified
to include this functionality, this will likely take more time than creating a completely new
prototype. Advantages of the new GUI are that it is then completely tailored to the full
featureset, and the new features are not just hacked in. We must then accept, however, that
the GUI will not be of the same level of maturity as existing GUIs.



70 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Why model the GUI?

GUI development is usually associated with lots of accidental complexity, of which we
consider two aspects: complex event handling (e.g., mouse events, key events, internal UI
updates, window manager updates, timings, and so on) and varying widget library between
different platforms. To this end, modelling the GUI proved simpler than coding this with
triggers and callbacks, as is frequently the case.

Why model the GUI with SCCD?

SCCD was selected as the most appropriate formalism for this problem, as it provides native
constructs to the previously mentioned sources of complexity. Complex event handling is
managed natively by the discrete event base nature of SCCD. Used widgets can also be
implemented as a dedicated SCCD class, making them applicable in many applications
(they can be fully tailored) and independent of the provided widget library. Finally, SCCD
has mature code generation capabilities for a variety of platforms, including bindings with
the TkInter’s event loop [298]. Note that the GUI does more than only present a set of
widgets, and a widget domain-specific language is therefore not appropriate. Indeed, many
widgets influence one another (e.g., pressing the “open” button creates a new toolbar of
widgets), and the behaviour would thus be hard to describe in an isolated widget.

5.1.2 Model
Figure 5.2 shows an excerpt of the GUI SCCD model, focussing on the CanvasElement
class. The CanvasElement class provides the visualization of a model element (e.g., a circle
for a Petri Net place). This element can be dragged around, removed, attributes can be
modified, links can be created, and so on.

The Class Diagrams part is partially shown, showing how this class relates to the initial
class MainWindow. From the MainWindow, several associations exist to other classes, such
as Toolbar, ProgressBar, and Canvas. Naturally, the CanvasElement is associated to a
Canvas. The CanvasElement, in its turn, has an association to the PromptWindow, as it
must be able to prompt the user for information, for example when modifying the attributes
of an element. Many other classes are not shown for clarity, though many inherit from
Window or Toolbar. Our custom-built widgets are also modelled explicitly using classes,
such as Entry, Text, and so on.

The Statechart is only shown for the CanvasElement, in which actions and conditions are
abstracted for readability. We now briefly explain the behaviour of the CanvasElement.
Upon initialization, we first check the type of rendering: either direct (as most other tools)
or through perceptualization (see Section 6.3). If it is direct, we immediately go to main,
where we wait for input. Otherwise we go to update MV to update the x and y attribute
(position) in the Modelverse. In the main state, there are several options, as shown in the
Statechart. Either an internal event can come in to draw the element, or different clicks
can occur. On middle click with the control key pressed, we modify the defined attributes,
which happens outside of the CanvasElement. On middle click without the control key
pressed, we modify the actual attributes, for which we go to the update attrs state. Here,
we query the attributes and open a prompt which allows users to modify these values.
This prompt is handled by a different class, and we only wait for an event indicating that
the prompt has been closed. When closed, changes are assigned in the Modelverse and



5.1. GRAPHICAL USER INTERFACE (GUI) 71

init

update_MV

check

x

y

main draggingremove

update_attrs

dirty

check

do

query prompt

wait process

left_click

[!control]

motion

/ move_group

right_click

[!control]

/ delete_element

mv_response

[rendered]

/ attr_assign

mv_response

/ attr_assign

[!rendered]

draw_element

middle_click

[control]

/ modify_defined_attrs

mv_response

left_release

mv_response

mv_response [!rendered]

mv_response

[rendered]

[changes > 0]

/ attr_assign

prompt_confirmed

/ attr_assign

mv_response

/ create_prompt

created_prompt

CanvasElement
coordinates : Tuple

as_element : Integer

cs_element : Integer

...

Canvas

...

...

Label

...

...

ProgressBar

...

...

ConnectingLine

...

...

Button

...

...

ChoicePrompt

...

...

Toolbar

...

...

MainWindow

...

...

PromptWindow

...

...

Window

...

[rendered]

middle_click

[!control]

/ read_attrs

Figure 5.2: SCCD model of the GUI (excerpt).



72 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.3: Screenshot of the GUI with a loaded CBD model.

(optionally) this element is marked as dirty, meaning that it should update its position in
the Modelverse. Back in the main state, a right click on an element causes it to be deleted.
A left click starts dragging the element, where it responds to motion events by sending out
a move group event to the complete group it is contained in. After the left mouse button is
released, the x and y attributes are updated in the Modelverse again.

A screenshot of the running GUI is shown in Figure 5.3, where a simple CBD model
is visualized and can be manipulated. This screenshot also shows the different toolbars:
the generic toolbar (new model, open model, enact process, . . . ), the model management
toolbar (alter metamodel, check conformance, . . . ), the visualization toolbar (different
visualizer, different visualized model, refresh visualization, . . . ), and the domain-specific
toolbar (containing domain-specific concepts to instantiate).

5.1.3 Evaluation

We now briefly evaluate the SCCD model created for the GUI with respect to our original
motivation. No detailed evaluation is given, as there is no scientific contribution.

By not relying on an existing GUI, we more prominently display the new functionality
that is offered by the Modelverse. For example, it was natural to give a prominent place
to the multiple notions of conformance (Section 5.6), conformance bottom (Section 5.7),
and process enactment (Section 5.9). The newly created GUI is however not familiar to
modellers and it is centered around showcasing new features, instead of usability.

By modelling the GUI using SCCD, event processing did indeed become easier. As shown
in the CanvasElement, we make extensive use of GUI events as triggers for transitions.
Documentation-wise, this model clearly indicates what happens when an element is left
clicked (left click event), dragged around (motion event), and then released (left release



5.2. WRAPPER 73

event). This is in contrast to three callback handlers, each of which registered to an object
and having to do mode checks themselves.

Each widget has its own SCCD implementation, instead of relying on the default widgets
of TkInter. While these widgets are sometimes still used, their manipulation is completely
event-based. For example, when clicking a button, no callback handler is invoked, but
an event is raised to the widget’s parent. This makes it more flexible to switch between
implementations, for example to port the same interface to PyGTK+, which has a different
set of widgets, with a different interface and different behaviour. Similarly, porting the
application between programming languages should also be simpler, as both the modal and
structural code has been shifted to SCCD. Only non-modal code remains, although this
is written in Python due to limitations of the SCCD compiler: there is no neutral action
language which allows translation to different platforms. While the porting process is not
completely automated, the effort is still reduced, as only a subset of the code has to be
ported.

5.1.4 Link to Requirements
Explicitly modelling a minimal GUI has an influence on Requirement 6 (Multi-Interface)
and Requirement 10 (Portability).

Requirement 6 (Multi-Interface) is influenced because the SCCD model serves as a
starting point for other interfaces, given that it implements all features of the Modelverse.
As mentioned before, several other interfaces have been created based on this same interface.
While all these interfaces are admittedly simple and unpolished, they show that such an
interface can easily be constructed. Additionally, it shows that multiple such interfaces can
jointly operate on the same Modelverse.

Requirement 10 (Portability) is influenced by the (partial) platform-independence of the
underlying SCCD model. For the modal and structural code, there is no dependency on
the implementation language, such that code for different platforms can automatically be
synthesized.

Summary
A (Graphical) User Interface (GUI) is an important factor in the usability of (meta-
)modelling tools. For the Modelverse, we explicitly modelled a proof of concept im-
plementation of a GUI using SCCD, making nearly all functionality of the Modelverse
available. SCCD was judged to be an appropriate formalism due to its native constructs for
concurrency, event processing, and timing, as well as code synthesis capabilities. Parts of
the SCCD model were presented, giving an idea of the documentation value of this model:
the behaviour is intuitively clear, in contrast to the many convoluted callbacks that would
otherwise be necessary. The modal behaviour of the GUI code could be automatically
synthesized, thereby decreasing development time and increasing portability.

5.2 Wrapper
As there are multiple (types of) interfaces to the Modelverse, we cannot expect each
interface to reimplement the Modelverse protocol from scratch. The Modelverse be-



74 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

ing a service, it has its own communication protocol, specifying supported operations,
their signature, their return value, and possible exceptions. A seemingly atomic oper-
ation in the client is often translated to several requests to the server. For example, the
API function model add(metamodel name, model name, HUTN code) results
in several Modelverse requests: model add, metamodel name, model name, and
HUTN code. Additionally, some client-side checks are also performed before the call is
made, such as whether or not the HUTN code represents a string. Through these checks,
we can at least guarantee the syntactical validity of the client’s request.

Having a reusable implementation of this protocol makes interfacing with the Modelverse
much simpler, as it can be invoked as if it were a local operation. It is thus useful to define
this independent of the interfaces, offering a reusable, high-level interface to the Modelverse
to all user interfaces. Other interfaces, such as the Python API, easily reuse the exact same
protocol.

5.2.1 Motivation
A reusable Modelverse protocol wrapper is required to speed up development across
multiple Modelverse Interfaces. For the Modelverse, we explicitly modelled the protocol
as an SCCD model, thereby following the MPM approach. As the primary advantages are
related to development time and portability, we only consider this aspect briefly.

Why model the wrapper?

Similar to the GUI, protocol development is not ideal with existing programming languages.
Indeed, protocols rely on different modes, timeouts, and asynchronous events, making
them non-trivial to implement and verbose. Additionally, coding the protocol makes it
non-portable between different implementation platforms.

Why model the wrapper with SCCD?

Similar to the GUI, the reliance of protocols on states, timeouts, and asynchronous events
makes the match with SCCD easy to make. Indeed, finite state machine representations
of a protocol are common as documentation in standard documents (e.g., Figure 6 in
RFC7931). The code synthesis feature of SCCD again enables portability between different
interfaces, even if they are not written in the same programming language. While technically
Statecharts would suffice as well, SCCD was used to make the code more interoperable
with other SCCD code, in particular the GUI. (Timed) Finite State Machines do not suffice,
as they have no notion of concurrency.

5.2.2 Model
Figure 5.4 presents a significantly abstracted version of the client wrapper statechart. The
main motivation for why a Statechart was required is still visible. The full model can be
found in the Modelverse Interface source code.

The leftmost part of the Statechart indicates the different modes the client is in. The client
can be initializing (i.e., setting up sockets and such), connected (i.e., ready for login), in

1https://tools.ietf.org/html/rfc793

https://tools.ietf.org/html/rfc793


5.2. WRAPPER 75

init

connected

service

manage

queue

context

model

process

activity

H

Figure 5.4: Abstract version of the client wrapper Statechart.

service mode (i.e., raw communication with an activity in the Modelverse), in management
mode (i.e., at the megamodel level), or can be modifying a model. In each of these different
modes, different operations can be performed by the client (e.g., login only when in
connected). There are three ways in which the model can be modified: as part of an enacted
process (where the interface is limited), through an activity (where raw communication
happens with the client), or through the usual modelling operations (most common). In the
modelling state, mostly the same set of operations is supported, after which we return to
the history state, as we have to stay in the same state. Some operations are only available
when modifying the model directly, and some operations exit the currently opened model.
The rightmost part of the Statechart indicates two orthogonal components: the queueing of
inputs (rendering behaviour asynchronous to the user), and the processing of context events
(which allow the client to update its state with that of the Modelverse).

5.2.3 Evaluation
We now briefly evaluate the SCCD model created for the client wrapper with respect to
our original motivation. No detailed evaluation is given, as there is no scientific contribu-
tion.

Even though Figure 5.4 is an abstracted view on the actual model, which is much larger,
it still highlights the advantages of using Statecharts. First, the interface operates asyn-
chronously from the client, therefore requiring orthogonal states. An asynchronous interface
is required, as otherwise the interface (e.g., a GUI) would hang while the operation is pro-
cessed. Creating an asynchronous interface is much harder without Statecharts, as it would
require threads. Threads conflict with the use of TkInter’s eventloop, meaning that the
notion of concurrency would have to be updated depending on which context the protocol
is used in.

Second, the different modes of the interface are mapped to the states of Statecharts. In each
states, different transitions are defined, reacting to a specific set of input events. This is
easier to conceptualize than having a single large if/then/else block. Additionally, entry and
exit actions can be defined on each of these states, making sure that some action certainly
occurs when switching modes (e.g., closing the model when going back to manage).

Third, several native constructs of Statecharts significantly help, such as the history state
and transition timeout. For the history state, the current state has to be memorized when
doing operations, for which the history state proves useful. For the timeouts, this can be



76 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

easily used to handle an unresponsive server, for example because of a lost connection to
the Modelverse.

5.2.4 Link to Requirements

Explicitly modelling the wrapper to the Modelverse protocol has an influence on Require-
ment 6 (Multi-Interface) and Requirement 10 (Portability).

Requirement 6 (Multi-Interface) is influenced, as the protocol can be reused across
different interfaces. This decreases the time required to create a new interface, and makes
sure that all interfaces use the same protocol.

Requirement 10 (Portability) is influenced, as the protocol was modelled and therefore
platform-independent. For example, we have shown the advantage in combination with
different concurrency implementations (TkInter versus threads). Additionally, SCCDs code
synthesis capabilities can generate code for different programming languages as well, with
the exact same behaviour.

Summary

As the Modelverse has a client-server architecture, its operations and their signature follow
a specific protocol that has to be implemented in each interface. We explicitly modelled
this protocol using SCCD, which has native constructs for the concepts required: timeouts,
history states, concurrency, and states. This model can be used for documentation purposes,
but also for code generation for different platforms, handling different concurrency imple-
mentations (e.g., TkInter versus threading) and different programming languages.

5.3 Network Protocols
The use of a client-server architecture naturally requires the presence of a network inbetween
the client and server. While the Modelverse protocol was defined in the previous section,
these requests still need to get to the Modelverse over the network intact and in the correct
order. This is the job of the network protocol: requests are serialized and transferred
following some protocol, for example XML/HTTPRequests or WebSockets. At the server-
side, the data is received and deserialized again.

For maximum portability across languages and the least problems with existing firewalls,
we have chosen to use XML/HTTPRequests. This choice is particurly relevant between
the MvI and MvK, as this will likely be used over high latency networks with restrictions.
While a network protocol also has to be chosen between the MvK and MvS, this has
completely different requirements, as we have full control over the platform, the firewalls,
and latency is likely to be low. For simplicity, XML/HTTPRequests are used throughout.
These types of requests are generally better supported in current libraries and tools, and
have a higher change of being allowed even with strictly configured firewalls. Additionally,
generic XML/HTTPRequest tools, such as web browsers, can trivially communicate with
the Modelverse. Nonetheless, this does mean that more advanced functionality (e.g., server-
initiated communication) has to be implemented on top of this minimal protocol.



5.3. NETWORK PROTOCOLS 77

5.3.1 Motivation
We have chosen to model the network communication protocol from scratch using SCCD.
As the primary advantages are related to development time and portability, we only consider
this aspect briefly.

Why a new network protocol library?

Network communication, and in particular using XML/HTTPRequests, is frequently used
today, and various libraries exist for it. However, all these libraries have a different focus,
different interface, and often a different set of features. For example, the implementation in
the Python standard library is limited to synchronous requests and non-threaded execution,
which has a negative impact on performance and usability. Indeed, we do not want that
the GUI is blocked for each networked request. Other libraries support asynchronous
communication, but then these libraries only exist for a single language and cannot be
ported (e.g., to Java). Combined with widely varying interfaces, it proves difficult for the
wrapper to interface with the library, as each platform requires its own implementation and
workarounds. Given the simplicity of the XML/HTTPRequests protocol, this protocol was
implemented from scratch to provide a reusable implementation across all platforms.

Why model the network protocol?

Similar to the wrapper, the network protocol implements a protocol, and therefore we
expect the same benefits we saw for the Modelverse wrapper: easier to implement and
increased portability.

Why model the network protocol with SCCD?

As with the Modelverse wrapper, SCCD is an appropriate formalism due to its native
support for states, events, and timeouts. The dynamic structure features of SCCD are also
useful, as the number of socket instances varies throughout time. The code generation
capabilities of SCCD can again be used to generate code for various platforms.

5.3.2 Model
We now present the model of the network protocol used for the Modelverse. We only
present an abstract view for readability, ignoring actions and abstracting conditions, while
the states and their transitions are fully shown. Two components are considered: the server
and client side. In both cases, the full model can be accessed from within the Modelverse
source code.

Contrary to the standardized HTTP specification, we allow for keep-alive connections by
default: when data is received, the same socket can again receive input or send back output.
Originally, HTTP specifies the use of a new socket for each request, thereby incurring a
high overhead. Newer versions of the HTTP protocol (optionally) support keepalive as
well, though this has not yet been implemented in all HTTP libraries yet. In both the client
and server, we remain backwards compatible, meaning that if the other party closes the
socket, we also close the socket and open a new one when necessary.



78 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.5: Network protocol SCCD model at server side (abstracted).

A minimal wrapper was created that wraps around the Python socket interface. When
socket events are generated (e.g., bind socket), the respective Python socket function is
called asynchronously. Asynchronicity is important, as actions in Statecharts are assumed
to take zero time. This socket library has to be reimplemented on the different platforms
that we consider.

Server-side

Figure 5.5 presents the SCCD model used to model the network protocol at the server
side. There are two classes in this SCCD model: the Server and the Socket. The Server
is the main component that provides the interface to the user of the library. Upon startup,
it creates a server socket on which the system listens for new connections. When a new
connection is opened, a Socket object is spawned, which then starts communication. In the
Socket object, received data is appended to a queue until the header is completely received.
Using information from the header, the remainder of the input data is used to decode the
actual payload. After the payload is received, we return back to the listening state, again
waiting for a header. When data has to be sent back by the server, this is first put into a
queue, which is later processed by an orthogonal component.



5.3. NETWORK PROTOCOLS 79

Figure 5.6: Network protocol SCCD model at client side (abstracted).

Client-side

Figure 5.6 presents an abstracted version of the SCCD model used to model the network
protocol at the client side. There is only one class in this SCCD model: the HTTPClient.
The client is started and immediately creates a socket and prepares to set up the connection.
As soon as everything is ready, an event is issued to the instantiator to notify that the client
is ready for input. Subsequently the “connect” event can be sent to make the connection to
the specified address. After the connection is made, we enter the orthogonal component.
Here, there are four concurrent operations: 1) listen to any incoming message on the socket,
which is appended to the input buffer; 2) check if there is sufficient data on the output
buffer, and if so, send out the first message; 3) queue any incoming send events from the
instantiator of the object; and 4) check if there is sufficient data in the input buffer, and if
so, parse the data and send out the reply to the instantiator.

5.3.3 Evaluation
We now briefly evaluate the SCCD model created for the network protocols with respect to
our original motivation. No detailed evaluation is given, as there is no scientific contribu-
tion.

For both the server and client side, a socket wrapper is used, which provides platform-
independent access to low-level socket operations. This is a first step towards cross-platform
portability. Sadly, as mentioned before, SCCD does not support a neutral action language
at the moment, and therefore Python was used in the body of the functions. Nonetheless,
all modal and structural parts of the system are modelled explicitly and therefore portable.
Through the use of this SCCD model, not only the GUI, but all SCCD-based applications
have asynchronous access through an SCCD-native HTTP library.

Because we have control over both the client and server, we were able to augment the
protocol with a keepalive feature: sockets are not closed but reused across multiple requests



80 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

and replies. This significantly reduced the overhead of socket connection and binding,
while also minimizing the number of sockets being used. When either the client or server
do not implement the keepalive feature, we fall back to the original HTTP specification
where the connection is closed after the request and subsequent reply.

Thanks to SCCD, the class diagram is used to manage the multiple active sockets, each
with their own state.

5.3.4 Link to Requirements
Explicitly modelling the network protocols used by the various components has an influ-
ence on Requirement 4 (Multi-User), Requirement 5 (Multi-Service), Requirement 6
(Multi-Interface), and Requirement 10 (Portability).

Requirement 4 (Multi-User) is influenced, as the network protocol is also responsible for
the queueing discipline of requests and replies. To ensure that all users get a fair chance
of getting a message through (i.e., resource sharing of the network), the network protocol
implementation must take this into account. By reusing the same socket all the time for a
single user, we limit the amount of sockets opened on the server.

Requirement 5 (Multi-Service) is influenced, as these various services all make use of the
same network protocol. As such, it was important to choose a network protocol which all
services can support. For that purpose, XML/HTTPRequests were ideally suited.

Requirement 6 (Multi-Interface) is influenced, as the protocol can easily be reused
across multiple interfaces. This is similar to the previous requirement, since we also want
to maximize the number of interfaces that can connect.

Requirement 10 (Portability) is influenced, as the protocol can be reused across multi-
ple interfaces and on different platforms, independent of library support for these plat-
forms.

Summary
Due to the distributed nature of the Modelverse, network protocols are required. We
opted for XML/HTTPRequests due to their wide support: there are tons of libraries and
tools supporting it and this protocol is generally allowed through firewalls. We explicitly
modelled this protocol in SCCD to maximize the uniformity across multiple interfaces
and to guarantee that we can make use of the keepalive optimization. The model gave us
documentation on the behaviour of the protocol as well as an automated way to synthesize
code out of it.

5.4 Core Library
To enable the model management capabilities of the Modelverse, a wide set of such opera-
tions have to be implemented. This is done through the Modelverse model management
library, offering the necessary operations: basic modelling operations (e.g., create instance,
assign attribute), meta-modelling operations (e.g., define new type, define attribute), and
model management operations (e.g., model merge, check conformance). Our library is
flexible and can be augmented throughout the lifetime of the Modelverse.



5.4. CORE LIBRARY 81

These functions are offered through a master algorithm, which implements the Modelverse
protocol with which the client’s Modelverse wrapper communicates. It is this function that
is responsible for invoking the correct operations based on the incoming requests. This
model is thereby also responsible for which internal functions are offered. The model can
easily be altered to support new functions or remove existing functions on-the-fly.

5.4.1 Motivation

As was motivated, a core library describing the Modelverse protocol and its supported
model management operations is required. We modelled a new model management library
using the procedural Action Language of the Modelverse (Section 5.10). As the primary
advantages are related to documentation, development time and portability, we only consider
this aspect briefly.

Why a new (meta-)modelling library?

Several existing libraries already provide support for modelling, meta-modelling, and model
management operations. Examples include EML [165] for model merging and ECL [163]
for model comparison. And while these languages and libraries are well established and
mature, they are not reusable in the Modelverse project due to their lack of portability and
flexibility.

For portability, most existing languages, such as EML and EOL, ultimately depend on Java.
For example, it is possible to integrate Java code in EOL, and the reference interpreter is
also implemented in Java. This makes it difficult to port such libraries between platforms,
as they require a (specific version of the) Java interpreter.

For flexibility, these languages are based on a single approach, hardcoded in the language.
For example, many approaches to model merging [54] exist, but EML only implements
some of them. While indeed new languages can be conceived that handle more cases, this
requires potentially breaking changes to the language, thereby requiring changes to the
interpreter. Additionally, it is impossible to delve deeper, or “step”, into these languages, as
they are seen as atomic. Ideally, we would like to see under the hood what happens when
the operation is performed.

Why model the core library?

The primary reason to model the core library, instead of coding it with an existing language,
is to allow for increased platform independence. We additionally notice increased unifor-
mity: if the core library is modelled itself, it can be used as any other model. This not only
offers introspection by querying the model, but all operations from the core library can also
be used as activities, for example in the FTG+PM.

Interestingly, if there is a live model of the core library in the Modelverse, this means
that it can be updated dynamically. Indeed, the semantics of all operations could then be
updated while the application was running, allowing for on-the-fly bugfixes and patches.
Additionally, in theory multiple implementations could live side by side, as models, allowing
for an easy way to switch between different semantics for a single operation.



82 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Why model the core library with Action Language?

The question remains why our custom Action Language was used to model this library.
In the limit, code can be seen as a modelling language as well, as an abstract syntax,
concrete syntax, and semantics can be constructed. Our custom Action Language has
several advantages, most of which are discussed later on. For this specific problem, it
was important that the Action Language resembles procedural code (arguably the most
appropriate for model operations), is minimalistic though expressive (meaning that almost
all operations are themselves library functions written in the Action Language itself), and
is platform independent (meaning that there are no escape hatches to the implementation
language. The minimalism is required to allow very deep inspection of the semantics of
the library, resulting in only a few “primitive” operations that cannot be inspected further.
An example of this is shown in the model. The platform independence is required to
make the library applicable in all possible situations, independent of the implementation
platform being used. Indeed, if there was an escape hatch to a general purpose programming
language, every implementation of the Modelverse would have to intimately rely on this
programming language.

5.4.2 Model
The core library merely consists of several Action Code files, containing about 7,000 lines
of Action code in total. This is all it takes to form the core of the Modelverse’s behaviour. Of
these, approximately 3,000 lines are related to the Modelverse protocol with all associated
error handling and access control checking. While this does not include any advanced
model management operations, these can be modelled using the provided codebase.

For brevity, only one example operation is shown here, together with its interface: the
creation of a new element in a model (instantiate node). The Modelverse core library starts
up the main loop, from where all execution originates, shown in Listing 5.1. Input from
the user is received and stored in a variable (line 5). The value in this variable determines
the command to execute, which in our case finds model modify (line 10). As a result,
the function cmd model modify is invoked with two parameters, which both block for
user input: the model in which we perform the modification and the metamodel to use.
When these two parameters are passed by the user, as individual inputs, the function is
invoked.

1 output("Welcome to the Model Management Interface v2.0!")
2 output("Use the ’help’ command for a list of possible commands")
3

4 while (True):
5 cmd = input()
6 if (cmd == "help"):
7 output(cmd_help())
8 ...
9 elif (cmd == "model_modify"):

10 output(cmd_model_modify(single_input("Model name?"), single_input("Metamodel
name?")))

11 ...

Listing 5.1: Core library root interface function (excerpt).

Upon invocation of the cmd model modify function, shown in Listing 5.2, the function
starts executing. Checks are now performed to determine whether the passed parameters
are sane. First, we check whether the model name exists (line 7) and if current user has read



5.4. CORE LIBRARY 83

permission (line 8). Second, the metamodel is subjected to the same tests (line 11). When
these tests pass, the full model is read out (line 13) and passed on to the modify function
(line 16). During this call, it is determined whether the model is opened in read-only mode,
or if writes are allowed. When finally the function returns, the altered model is written out
for real (line 19). This prevents concurrent conflicting changes.

1 String function cmd_model_modify(model_name : String, metamodel_name : String):
2 // Model modify operation, which uses the mini_modify.alc operations, though with

extensions for access control
3 String model_id
4

5 model_id = get_entry_id(model_name)
6

7 if (model_id != ""):
8 if (allow_read(current_user_id, model_id)):
9 type_id = get_entry_id(metamodel_name)

10 if (type_id != ""):
11 if (allow_read(current_user_id, type_id)):
12 Element new_model
13 new_model = get_full_model(model_id, get_entry_id(metamodel_name)

)
14 if (element_eq(new_model, read_root())):
15 return "No conformance relation can be found between these

models"!
16 modify(new_model, allow_write(current_user_id, model_id))
17 if (allow_write(current_user_id, model_id)):
18 // Overwrite the modified model
19 model_overwrite(new_model, model_id, get_entry_id(

metamodel_name))
20 return "Success"!
21 else:
22 return string_join("Permission denied to model: ", full_name(

type_id))!
23 else:
24 return "Metamodel not found: " + metamodel_name!
25 else:
26 return "Permission denied to model: " + model_name!
27 else:
28 return "Model not found: " + model_name!

Listing 5.2: Core library modify permission check function (excerpt).

We now delve into the modify function, shown in Listing 5.3. The design is similar as the
previous interface function: a big If construct with all supported operations. In our case,
the instantiate node function is selected in line 12. The type and name of the operation to
perform are also read out and passed on to the interface function.

1 Boolean function modify(model : Element, write : Boolean):
2 String cmd
3

4 output("Model loaded, ready for commands!")
5

6 while (True):
7 cmd = input()
8 if (cmd == "help"):
9 output(cmd_help_m(write))

10 ...
11 elif (cmd == "instantiate_node"):
12 output(cmd_instantiate_node(write, model, single_input("Type?"),

single_input("Name?")))
13 ...
14

15 return True!

Listing 5.3: Modification sub-interface (excerpt).



84 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

The function cmd instantiate node again performs some checks whether or not the
operation is valid. In this case, we check whether we are allowed to modify the model
(line 2), whether the type exists (line 3), whether the element already exists (line 4), and
whether the type we are instantiating is not an edge (line 7). If all checks pass, the actual
library function is called with the provided parameters (line 10).

1 String function cmd_instantiate_node(write : Boolean, model : Element, mm_type_name :
String, element_name : String):

2 if (write):
3 if (dict_in(model["metamodel"]["model"], mm_type_name)):
4 if (dict_in(model["model"], element_name)):
5 return "Element exists: " + element_name!
6 else:
7 if (is_edge(model["metamodel"]["model"][mm_type_name])):
8 return "Element is not a node but an edge: " + mm_type_name!
9

10 element_name = instantiate_node(model, mm_type_name, element_name)
11 return "Success: " + element_name!
12 else:
13 return "Element not found: " + mm_type_name!
14 else:
15 return "Permission denied to write"!

Listing 5.4: Modification pre-check (excerpt).

The library function instantiate node is also modelled explicitly in the Modelverse,
and the source code is present shown in Listing 5.5. Here, most checks are guaranteed to
be done, so no additional checks take place. The actual instantiation is done in three steps:
1) a new unique model element ID is generated, taking into account the desired ID (line 6),
2) the newly created node is added in the model dictionary with the provided key (line 7),
and 3) the node is (re)typed to the desired type (line 8). At the end, the actually assigned ID
is returned, which might not be identical to the requested ID if that was already taken. The
individual functions called here, are also modelled explicitly themselves, though this would
lead us too far. All functions mentioned here eventually end up in primitive operations
(such as dict add), which don’t have an explicit model, but which are trivially mapped
to MvS operations (such as create dict). About 60 such primitive operations exist, all with
an intuitive mapping to MvS operations.

1 String function instantiate_node(model : Element, type_name : String, instance_name :
String):

2 String actual_name
3 Element value
4

5 value = create_node()
6 actual_name = instantiated_name(value, instance_name)
7 dict_add(model["model"], actual_name, value)
8 retype(model, actual_name, type_name)
9 return actual_name!

Listing 5.5: Instantiate node model operation (excerpt).

5.4.3 Evaluation
We now briefly evaluate the Action Code model created for the core library with respect
to our original motivation. No detailed evaluation is given for this topic, as this does not
present a significant contribution apart from development time and portability.

By modelling the core library explicitly, we can query the core library without additional
tools. Indeed, the core library is itself a model, and can thus be opened and manipulated like



5.4. CORE LIBRARY 85

any other model. The library can even be rewritten dynamically, making it possible to patch
the Modelverse operations while it is running. Only primitive operations cannot be altered,
though these are trivial and tightly interwoven with the MvS operations. Additionally, most
operations can be used directly as part of activities.

The explicitly modelled core library also makes the Modelverse highly portable: everything
is based on a minimal Action Language, for which an interpreter is trivial to create (Sec-
tion 5.10). As such, the core library is independent of any platform and can easily be ported
to a different platform. This is reflected in the functions: everything is explicitly modelled
up to the level of the raw graph manipulation operations. As such, the internals of the tool
can be inspected and potentially manipulated, thereby aiding in, for example, debugging of
the core library.

5.4.4 Link to Requirements

Explicitly modelling the core library with model operations has an influence on Require-
ment 1 (Language engineering), Requirement 2 (Activities), Requirement 3 (Process
modelling), Requirement 4 (Multi-user), Requirement 6 (Multi-interface), and Re-
quirement 10 (Portability).

Requirement 1 (Language engineering) is influenced, as all language engineering opera-
tions are implemented using this core library. When different language engineering features
are required (e.g., multi-level modelling), this can easily be done by altering the core library
directly, without restarting the Modelverse at all.

Requirement 2 (Activities) is influenced, as all model management operations, for which
an implementation exists in the core library, are now explicitly modelled. Using this explicit
model, it becomes possible to use them as activities as well, or use them directly as part
of other activities. Furthermore, it is this core library that is responsible for executing the
activities.

Requirement 3 (Process modelling) is influenced, as all enactment of the process is based
on operations in this core library. Indeed, the function process enact is part of this
core library.

Requirement 4 (Multi-user) is influenced, as resource allocation for these users can only
happen at the level of action language. Should an operation not be modelled like this, it
has to execute as a single atomic instruction, for the Modelverse has no way of pausing its
execution (i.e., pre-emption).

Requirement 6 (Multi-interface) is influenced, as an interface optionally has the chance
to extend the existing Modelverse interface by defining new operations in the core li-
brary. As this is done dynamically, this can be done without negative effects for other
interfaces.

Requirement 10 (Portability) is influenced, as an explicitly modelled core library makes
the tool independent of existing model management libraries. While it is a cost to imple-
ment this library, all operations are fully portable, without relying on existing implementa-
tions.



86 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Summary
The meta-modelling library encompasses all supported modelling, meta-modelling, and
model management operations of the Modelverse, as well as its protocol. While several
such libraries and languages exist, we have explicitly modelled a new library using the
Action Language of the Modelverse, creating complete platform independence and allowing
dynamic updates at runtime. Our custom Action Language was used as a formalism due
to its platform independence and minimality, making it ideally suited to delve deeper into
the internals of the operations. More importantly, explicitly modelling these operations
allowed them to be considered as ordinary models, enabling model queries and their use as
activity.

5.5 Formalism Transformation Graph
The Formalism Transformation Graph (FTG) describes all formalisms present in the Model-
verse and the activities between them. This offers an overview of all the models, formalisms,
and activities that can be (re)used by modellers and language engineers. Activities provide
a means of going from one formalism to another, while retaining certain properties. For
example, a domain-specific language with an activity mapping it to Petri Nets, can reuse
the analysis of Petri Nets for its own.

In the Modelverse, this FTG is additionally used to organize and structure all present models.
Models in the FTG are annotated with meta-data, storing information about permissions,
traceability, properties, and so on. Similarly, activities can store their input and output
signature, describing which models they operate on.

5.5.1 Motivation
The FTG provides structure to the plethora of models that live in the Modelverse. Instead
of coding this and keeping the structure hidden in the code, we modelled this explicitly as a
megamodel. As the primary advantages are related to decreased development time due to
reuse, we only consider this aspect briefly.

Why model the FTG?

By turning the FTG into a model, it can be manipulated like any other model, thereby
circumventing the need for new operations. Indeed, deleting a model is now just removing
an element in the FTG model, reusing much of the existing code of the core library.
Querying the available models and their transformations is similarly identical to existing
model management operations. Furthermore, the FTG is a data structure as well, making
it unnecessary to store model references in a coded data structure. When modelled, even
multiple FTGs are possible, for example one for every user, based on the access permissions
of that specific user.

Why model the FTG as a megamodel?

A megamodel is the natural choice for the FTG, as indeed the FTG is a model containing
(or referencing) other models. By storing references to each model in another model, the



5.5. FORMALISM TRANSFORMATION GRAPH 87

Root

SimpleClassDiagrams

TypeMapping

conformance_mv

0

1

Formalisms

Models

Type Mappings
admin

admin

nobody

admin (W) admin (W) world (R)

admin (W) admin (W) world (R)

conformance_mv

0

conformance_mv

1

LTM_Bottom

ManualActivity

ActionLanguage

ProcessModel

Traceability

Figure 5.7: Initial bootstrap FTG including metadata and access control (excerpt). Instance-
of links are parameterized with a conformance semantics (e.g., conformance mv) and type
mapping model (e.g., 0).

megamodel can also be used to store meta-data, which is stored in additional attributes. We
have provided support in this megamodel to store information about users, groups, model
hierarchy, and traceability links.

5.5.2 Model

Figure 5.7 presents an excerpt of the initial FTG that is loaded when the Modelverse is
initialized, and thus without any non-critical model. Only an excerpt is shown for readabil-
ity, as even at initialization a lot of meta-information is stored. Full information is shown
only for the SimpleClassDiagrams formalism, to give an indication of which information is
stored. This model is hierarchically contained in the folder “Formalisms”, which resides in
the root of the hierarchy (folder “/”). It has the following access permissions: the owner
(user “admin”) has read/write permissions, users that are member of the owning group
(group “admin”) have read/write permissions, and all other users (world) have read-only
permissions. The model conforms to itself (the self loop) and for this relation is parameter-
ized with “conformance mv” conformance semantics (Section 5.6), and the type mapping
is stored as a separate model (stored as model “0” in the “Type Mappings” folder). Another
example is the “Type Mapping” formalism, which conforms to “SimpleClassDiagrams”.
Note that a single model might conform to multiple metamodels, or even to the same meta-
model with a different mapping or semantics, which is why conformance associations can
be parameterized. The same information is stored for each model in the Modelverse.

Besides the models and their hierarchy, the FTG also stores user information: all user data
(e.g., name and password) is stored, as well as the groups they belong to and which they
own. Each model has an owning user and group, which was mentioned with the access
permissions.

This model is updated as the Modelverse is executing, thereby adding or removing models,
conformance relations, and users. All changes can be performed through the use of the
usual model management operations, as the FTG is itself a model. This also means that it
is possible at runtime to introduce new (types of) relations.



88 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

5.5.3 Evaluation
We now briefly evaluate the model of the Formalism Transformation Graph with respect
to our original motivation. No detailed evaluation is given for this topic, as this does not
present a significant contribution.

By storing all meta-information explicitly, in the form of an extended FTG, we provide
simple access to all information of these models. As the FTG is a model itself, it can
be queried and manipulated as any other model. Besides, no data structure needs to be
defined to store the models and their meta-information: everything is explicitly modelled
and available to users. This was seen in the core library, where all operations that add or
remove models are merely instantiating or removing elements from the FTG. As soon as
the FTG is updated, this change is visible to all users simultaneously.

It is also possible for models to have multiple conformance links, which are annotated
with additional information pertaining to the conformance relation. Again, by updating
the associations in this model, the actual relations between the models change. By storing
for each element in the FTG a timestamp when it was last modified, it would be possible
to cache results: if the conformance relation was created after the latest modification of
the model, we can guarantee that the model still conforms without doing the conformance
check again.

The same model is used to manage all users and groups, and again all such operations
become merely changes on the FTG model. Due to the high amount of information stored
in this model, and its sensitivity (e.g., user password hashes), it is best set to be inaccessible
for all users except for the admin users.

5.5.4 Link to Requirements
Explicitly modelling the FTG, used for model management and meta-data, has an influence
on Requirement 1 (Language Engineering), Requirement 2 (Activities), Requirement
3 (Process Modelling), Requirement 4 (Multi-user), and Requirement 8 (Access Con-
trol).

Requirement 1 (Language Engineering) is influenced due to the megamodelling involved.
Various languages can have relations between one another, such as traceability when the
current language is actually the merger of multiple other languages. Like everything else,
these inter-model links are modelled explicitly in the FTG as well, making it possible
to operate with them. In the future, fragment-based composition of languages, partially
enabled by the FTG, might have further effects on language engineering.

Requirement 2 (Activities) is influenced because of the explicit activity signature stored in
the FTG. For each activity, the set of input and output models is specified in this megamodel
of all models. This makes it possible to search applicable activities for a specific model, or
vice versa search for all possible models that can be passed to an activity.

Requirement 3 (Process Modelling) is influenced because the FTG part of the FTG+PM
can be automatically constructed based on the process model, filtering models from the
single big FTG.

Requirement 4 (Multi-user) is influenced, as the FTG can be used for multi-user collabo-
rations as well. For example, it can be used to store version control information (e.g., model



5.6. CONFORMANCE ALGORITHM 89

history, revision number, author, log information) and locking information (e.g., has a user
locked a model, does the user have an exclusive lock). While these are not implemented,
the use of an FTG provides many future opportunities in this direction.

Requirement 8 (Access Control) is influenced, as access control is implemented through
the FTG. Indeed, for each model some metadata is stored in the megamodel, which can later
on be used for access control. The same megamodel is also used for navigation through
a tree structure, thereby also allowing access control on the directories grouping models
together.

Summary
The FTG references the various formalisms, models, and activities stored in the Modelverse.
By explicitly modelling the FTG as a megamodel, it becomes possible to reuse existing
model management operations on the core data structure of the Modelverse. Additionally,
it can be used to store meta-information of models, such as access control information,
traceability links, and model versioning, and of users, such as passwords and group mem-
bership.

5.6 Conformance Algorithm
The conformance algorithm defines what it means for a model to conform to a metamodel.
To do this, it has to provide the semantics associated with the meta-meta-model, such as the
Class Diagrams formalism. For example, what does the inheritance link mean, is multiple
inheritance supported, which attributes are supported on classes, what does the multiplicity
value do, and so on. The importance of this algorithm can thus hardly be overestimated, as
it forms the foundations of any (meta-)modelling tool [32, 41, 89, 279]. In this section, we
focus on the linguistic conformance relation, being the primary dimension of interest to
modellers and language engineers.

5.6.1 Motivation
For the linguistic conformance relation, many diverging implementations are given in the
literature, where none agree on what it means for a model to conform to a metamodel. For
example, AToMPM [273] and MetaDepth [79] both support multiple inheritance, but they
have different precedence when attributes are in conflict. Even similar tools, by the same
authors, are often incompatible: AToMPM [273] and AToM3 [86]; WebGME [191] and
GME [175]; DPF [173] and WebDPF [228]. Even different versions of the same tool can
be incompatible, either intentionally [89], or accidentally due to (minor) implementation
changes or bugs. This makes meaningful model exchange between these two tools (or even
two versions of the same tool) difficult. This will be our primary motivation for explicitly
modelling the conformance relation. Most of the time, there is even no clear definition of
conformance for any of these tools: details are implemented in the source code, making it
impossible to understand without reverse engineering or trial and error.

This raises the question as to what “instantiation” and “conformance” mean in most tools:
each tool implements its own algorithms, based on what they believe that it means [29, 84,
99, 131, 266, 267]. The reason for this is simple: even the UML [5] doesn’t state what it



90 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

means for a model to be instantiated or conform to another model [14, 17, 30, 31]. Some
tools merely document their algorithm as “following long established semantics” [30, 323],
without being more explicit about it. Many variants exist [170, 230], and the meaning of
conformance can even vary between different layers in the meta-hierarchy [31]. It should
thus not come as a surprise that the exact meaning will still take some time to settle [41],
while each tool implements its own variation [88].

The problem gets even more obvious when multi-level modelling is added to the mix. Being
a relatively new field that is still expanding, many new concepts are being introduced, such
as potency. Interpretations of potency vary widely [239]: there is normal potency [169],
leap potency [81], and potency for associations [25].

Another example is the reliance on hardcoded associations, which are not checked by the
conformance algorithm, but by the implementation. For example, many tools hardcode
inheritance links [175, 191, 235, 273], conformance relations [67, 90, 99, 100], aggregation
and composition links [15, 19, 295], containment links [177], multiplicities [40, 177, 279],
or even version numbers [142]. By not checking these values explicitly, but relying on the
underlying implementation, tool semantics becomes unclear.

Similarly, most tools hardcode their meta-circular level [17, 237, 243, 273]. This makes it
impossible to use another Model at the Meta-Circular Level (MMCL) than the one(s) for
which the type/instance relation was defined.

Due to these intentional or accidental differences, inconsistencies between tools arise:
all models, including languages, become grafted on the tool’s implementation. With the
growing importance of tool interoperability, this turns into a problem: while models can
be exchanged, inherent tool semantics cannot. This problem is particularly relevant for
model repositories, as there is no universally agreed upon MMCL, nor an agreed upon set
of physical links [36, 98, 191], nor an agreed upon conformance algorithm. Without this,
model repositories are forced to make decisions on which models they accept and process.
An extreme case is ReMoDD [113], where models are merely treated as files, without
attaching any semantics, thereby quickly reducing its use to that of a file server. Another
case is MDEForge [36], where models are first-class citizens and are fully supported, for
example through model transformations [99]. Distil [190] is another approach, which
provides a DSL and rich tool support for both the storage and service definition part of the
service, including code generation and deployment.

We distinguish two types of variations between tools: syntactical and semantical. Syntactical
variations result in non-exchangable models, and semantical variations cause unexpected
behaviour with successfully exchanged models. A simple example is multiple inheritance.
Syntactically, some tools do not support this, making them unable to receive models
from tools which do support multiple inheritance. Semantically, some tools handle the
resolution order of multiple inheritance differently, thereby altering the set of allowed
instances.

We tackle this problem by explicitly modelling the language syntax and semantics (i.e.,
conformance), usually built into the tool. Apart from serving as documentation, new syntax
and semantics can then be loaded on-demand without altering the tool. As such, a single
tool is able to store and operate semantically meaningful models of different tools, given
that explicit models are present. Models are then not grafted on tools, but on other models,
which can just as well be exchanged.



5.6. CONFORMANCE ALGORITHM 91

A B
contains

contains

(a) AToMPM meta-model.

a:A b:B

(b) Invalid instance.

A B
$noLoop([A2B,B2A])$

(c) Metadepth meta-model.

Figure 5.8: First example language: use of containment links.

To concretize the problem, we focus on two rather similar tools: AToMPM [273] and
Metadepth [79]. For both tools, we describe some (hardcoded) differences to illustrate
the problem. We present minimal example languages and models for both syntactical and
semantical differences.

Syntactical Variations

First are syntactical variations, caused by a different abstract syntax of the meta-language.
Such changes can automatically be detected, as a model would rely on unknown constructs.
We show two examples: one with a feature of AToMPM that Metadepth does not support,
and one that is the other way around.

The first example language, in Figure 5.8a, uses a specific kind of association: the contain-
ment relation, as supported by AToMPM. It resembles an ordinary association, but indicates
that the source element is a container for the target element. Its primary use is for visual
representation, though it is also used as implicit constraint: containment cycles are not
allowed. Instances of class A can contain instances of the class B, and the other way around.
Figure 5.8b shows an example instance of this language, where a contains b, but also the
other way around. Conceptually, this does not make any sense. With a containment relation,
this is automatically flagged as an error and the model does not conform. In Metadepth,
which does not support a containment relation, this same language cannot be loaded; the
association type “containment” is unknown. As such, the model cannot be exchanged
either, as it depends on the language. It is possible to mimic the containment relation in
Metadepth by defining the containment relation as a normal association, which has an
additional constraint that does not allow loops. A semantically equivalent meta-model is
shown in Figure 5.8c.

The second example language, in Figure 5.9a, uses multiplicities on a class, as supported
by Metadepth. The lower and upper cardinality is defined as an integer attribute on the
class. Its primary use is to restrict the number of instances of this specific type: the number
of instances must be within this range. The class A requires that there are exactly two
instances of A in every model conforming to it. Figure 5.9b shows an example instance,
where only one instance of A is present. With the class multiplicities, this is automatically
flagged as an error and the model does not conform. In AToMPM, which does not support
class multiplicities, this same language cannot be loaded: the attribute “multiplicity” is
unknown. It is possible to mimic multiplicities in AToMPM by defining a global constraint,
which checks the number of instances of A. A semantically equivalent meta-model is shown
in Figure 5.9c.

In both example languages, the tools are equivalent in their expressiveness (i.e., they can be
used to express the same language), but the language must be represented differently. As
such, languages, and therefore models, cannot be easily exchanged without a conversion at
the abstract syntax level.



92 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

A[2]

(a) Metadepth meta-model.

a1:A

(b) Invalid instance.

A
$allInstances("A").size() == 2$

(c) AToMPM meta-model.

Figure 5.9: Second example language: use of node multiplicities.

C

A
d : int

B
d : string

(a) Metamodel.

d = "a"

c2:C
d = 1

c1:C

(b) AToMPM instances.

d = 1

c1:C
d = "a"

c2:C

(c) Metadepth instances.

Figure 5.10: Third example language: use of multiple inheritance.

Semantical Variations

Second are semantical variations, caused by a difference in the implementation of the
conformance check, which provides the semantics for the abstract syntax of the meta-
language. Clearly, just calling an association “containment” or an attribute “multiplicity”
does not automatically give it the correct semantics: it needs to be defined somewhere.
Semantic differences are indetectable when models are exchanged, as they structurally
conform.

Note that we consider the semantics of the meta-modelling language (i.e., what does a
given meta-model mean), and not the semantics of the modelling language (i.e., what does
a given model mean). The former is mostly hardcoded in the tool, whereas the latter is
domain-specific and implemented using, for example, model transformations.

The third and final example language, in Figure 5.10a, uses multiple inheritance, as sup-
ported by both AToMPM and Metadepth. An example of such a language is shown in
Figure 5.10a, where the class C inherits from both A and B. Both A and B define the
same attribute but with different types. It is unclear which of the two is selected for C,
which inherits from both. The semantics attached to multiple inheritance, responsible for
the choice, is hardcoded in both tools and left undocumented. Only experimentation is
therefore possible to figure out what it means, resulting in Figure 5.10b for AToMPM
and Figure 5.10c for Metadepth. As the set of conforming instances differs, for the same
language, both tools attach different semantics to the language. AToMPM seems to resolve
the earliest created inheritance link, whereas Metadepth seems to lexicographically sort the
class names and picks the first match.

The semantics of the inheritance relation is one of the well acknowledged semantical
variations in tools. While many tool developers claim that they “just use inheritance”, there
are actually a lot of variations to how it has to be interpretted [81, 90]. For example such as
in SELF [283], similar to Java [96], using prototypical inheritance as in GME [175] and



5.6. CONFORMANCE ALGORITHM 93

WebGME [191], or customized [82]. Support for multiple inheritance, and specifically the
resolution order, is frequently left undocumented, though it should be made explicit [202].
Many tool even define new inheritance links between elements, for which there is absolutely
no pre-existing notion of what it means for them to inherit from each other. Examples can
be found in fragments [15], concrete syntax [22], packages [14], mixin layers [80], and
even in statecharts [134].

Making explicit the notion of what all of this means was already done previously [19, 279],
but only formally: the actual implementation does not yet give a hint to the user as to
what it means. Users wanting to understand, will need to either read the (very formal)
documentation, or look at the implementation of the tool itself. As those users that will
be using the tool are likely to be domain experts, and not formal computer scientists or
programmers, this will not aid these users in understanding what they are doing. The
exception to this is Maude [67], where the conformance relation is explicitly modelled
within Maude itself [235]. Maude, however, does not tackle the problems identified further
in this paper.

While the example difference here is likely intentional, many other differences exist that
are likely accidental (e.g., bugs or ommissions). For example, AToMPM does not check
the type of attributes, and Metadepth cannot connect edges when inheritance is involved,
nor can it have attributes with specific keyworded names (e.g., “id”). Notwithstanding
the source of the difference, the semantic differences make model exchange meaningless.
And when the tool semantics is altered (e.g., an intentional change, a bugfix, or a newly
introduced bug), it is possible that a previously conforming model suddenly becomes
invalid, or that a previously invalid model suddenly becomes valid.

These variations give rise to the “meta-muddle” [109], which prevents users from under-
standing the finer details of what they are actually doing. Actually, having all of these
different semantics around isn’t that bad, as it is only natural in a relatively new research
domain. Similar fragmentation existed in the beginning of Object Orientation, with many
variations being developped in parallel [331]. However, the notion of what a model type is,
isn’t widely agreed upon [235], and in the current state of affairs, users will only find out
what it means through trial and error.

Problem Scope

The previously introduced problems are often irrelevant for users of a single tool. As such,
we do not propose to alter existing (meta-)modelling tools, though it might be useful to have
sufficient documentation. The true problem lies elsewhere, with tools that explicitly have to
communicate with many different tools: model repositories, such as the Modelverse.

The primary purpose of model repositories is model storage and exchange. It makes sense
that they want to maximize the set of supported tools, thereby maximizing the available
models. Model repositories, however, have to understand the models they are managing, as
otherwise they would be reduced to a mere file server. When working with models from
different tools, and possibly exchanging them between these tools, it becomes important to
take these syntactical and semantical variations into account.



94 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.11: AToMPM’s MAS
3 , taken directly from AToMPM itself.

5.6.2 Model
Varying abstract syntax and semantics at the meta-language level were identified as the root
of the problem. Current tools acknowledge that an explicit meta-model is required to create
a flexible modelling tool, in which the language can be altered. They do not, however, take
this one level up the meta-modelling hierarchy: the language used to create new languages,
the meta-language, is hardcoded in the tool. Being hardcoded, the problem becomes even
worse: they are not flexible either, as the hardcoded aspects cannot be altered in any way.
For this reason, we propose to explicitly model both the meta-language’s abstract syntax
and semantics, and make this fully flexible at runtime.

Some aspects of current tools are already modelled explicitly. We distinguish three layers,
as commonly agreed upon: M1 (model level), M2 (language level, or meta-model), and
M3 (meta-language level, or meta-meta-model). For Metadepth, both M1 (MAS

1 ) and M2
(MAS

2 , M SEM
2 ) are explicitly modelled. In AToMPM, the syntax of M3 (MAS

3 ) is additionally
explicitly modelled. Both tools hardcode the semantics of M3 (M SEM

3 ). It is this aspect of
the tool that we will also model explicitly in our approach.

As both MAS
3 and M SEM

3 are explicitly modelled in our approach, it becomes possible to
(1) alter them at runtime (e.g., optimizations, refactorings); (2) create and use new ones at
runtime (e.g., support a new tool, bugfixes); and (3) have multiple of them simultaneously
(e.g., models from different tools loaded in a single tool).

Meta-meta-model (MAS
3 )

The meta-meta-model MAS
3 defines the concepts that can be used when defining a new

language, or meta-model. It has two primary purposes. First, it can serve as documentation
for language engineers: what is the name of attributes, what constraints can be added,
whether multiple inheritance is supported, and so on. Second, it is required for several
operations that need an explicit meta-model. For example RAMification [171], used to
create a new language to express model transformation rules by Relaxing, Augmenting,
and Modifying the existing language. Differences in MAS

3 lead to syntactical differences
between tools, which can be automatically detected by comparing two MAS

3 models.

The MAS
3 of AToMPM is shown in Figure 5.11, modelled explicitly using Entity-Relation

Diagrams. It shows the various attributes that can be set on a class, such as “attributes” to
define new attributes, and “name”. Perhaps surprisingly, attributes have no dedicated entity,
in contrast to other approaches, such as EMF.

For the Modelverse, the used MAS
3 is shown in Figure 5.12.



5.6. CONFORMANCE ALGORITHM 95

Inheritance

Association
source_lower_cardinality : Natural
source_upper_cardinality : Natural
target_lower_cardinality : Natural
target_upper_cardinality : Natural

optional : Boolean
name : String

AttributeLink
Element

constraint : Action

Class
lower_cardinality : Natural
upper_cardinality : Natural

GlobalConstraint Attribute

Figure 5.12: Modelverse’s MAS
3 .

Meta-Language Semantics (MSEM
3 )

The meta-language semantics M SEM
3 defines the semantics of concepts defined in MAS

3 . It
takes a model and its meta-model as input, and determines whether the model conforms
to the meta-model. Its primary purpose is in determining whether a model is valid with
respect to a given language specification (i.e., check conformance). Differences in M SEM

3

lead to semantical differences between the tools, which are difficult to detect automatically.
Indeed, we would need to verify if two models for M SEM

3 behave exactly the same in every
possible context.

A snippet of the conformance algorithm of Metadepth is shown, pertaining to the multiplicity
checks of classes in Algorithm 3. This pseudo-code can be modelled in an explicitly
modelled action language.

ALGORITHM 3: M SEM
3 snippet for the cardinality check.

for all class ∈ allInstances(M3, Class) do
assert allInstances(M2, class) ≥ class.lower cardinality
assert allInstances(M2, class) ≤ class.upper cardinality

end for

For the Modelverse, the used M SEM
3 is shown in Algorithm 4. There are checks for the

following characteristics: 1) whether the element is typed at all; 2) whether the elements
type is part of the desired metamodel; 3) if the element is an edge, we check that both
source and target conform to the source and target of the type; 4) for each outgoing edge in
the type, we check whether the number of instances for the element is correct with respect
to the cardinalities in the type; 5) the same happens for all incoming edges; 6) we evaluate
the local constraint function for this element (if applicable); and 7) evaluate the global
constraint functions on the complete model. As soon as one of the tests fails, the model is
deemed non-conforming, and this error message is returned.

5.6.3 Evaluation
As a proof of concept, we implemented this approach in the Modelverse, which can now
be extended with new conformance algorithms (M SEM

3 ) and meta-circular levels (MAS
3 ).



96 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

ALGORITHM 4: M SEM
3 pseudo-code for the Modelverse.

for all e ∈M do
if e 6∈ TM then

return “Element has no type specified”
end if
if TM(e) 6∈MM then

return “Type of element not in specified metamodel”
end if
if is edge(e) then

if not is nominal instance(edge src(e), edge src(TM[e])) then
return “Source of model edge not typed by source of type”

end if
if not is nominal instance(edge dst(e), edge dst(TM[e])) then

return “Source of model edge not typed by destination of type”
end if

end if
for all te ∈ outgoing(tm[e]) do

if count(outgoing(e, te)) > read attr(te, “target upper cardinality”) then
return “Target upper cardinality violated”

end if
if count(outgoing(e, te)) < read attr(te, “target lower cardinality”) then

return “Target lower cardinality violated”
end if

end for
for all te ∈ incoming(tm[e]) do

if count(incoming(e, te)) > read attr(te, “source upper cardinality”) then
return “Source upper cardinality violated”

end if
if count(incoming(e, te)) < read attr(te, “source lower cardinality”) then

return “Source lower cardinality violated”
end if

end for
constraint result← read attr(e, “constraint”)(m, e)
if constraint result 6= “OK” then

return constraint result
end if

end for
for all cs ∈ all instances(MM, “GlobalConstraint”) do

constraint result← read attr(cs, “constraint”)(m)
if constraint result 6= “OK” then

return constraint result
end if

end for



5.6. CONFORMANCE ALGORITHM 97

MMMAToMPM MMMMetaDepth

L1 L2L3

M1 M2M3 M4 SEMAToMPM SEMMetaDepth

MMMModelverse

Action
Language

SEMModelverse

Figure 5.13: Overview of languages, models, and relations in the Modelverse.

When defining a new conformance relation, this is a model in the Modelverse and an
extension to the Modelverse at the same time. The interrelations between all models, such
as conformance relations, are also modelled explicitly. For each conformance relation,
the link is specified by the source model (instance), target model (meta-model), and
conformance semantics. As such, a model can conform to the same meta-model through
multiple conformance semantics, or to different meta-models using the same conformance
semantics, or to different meta-models using different conformance semantics.

Using this explicitly modelled approach, the Modelverse is able to offer the same results
for the conformance checks as either AToMPM or Metadepth, or any other tool, for that
matter. An overview of how these explicitly modelled interrelations are stored, is shown
in Figure 5.13, which itself represents a model in the Modelverse. While L1 and L2 can
only be created in AToMPM and Metadepth, respectively, L3 is a valid language in both.
Nonetheless, both tools attach a different semantics to L3, as seen in the two different
instances: M3 and M4. Both conformance semantics are also explicitly modelled, as shown
at the right. These are again typed by something, in this case using a conformance relation
defined specifically for the Modelverse, though also explicitly modelled. This could just as
well have been any other previously defined semantics.

The Modelverse can therefore be used to host a variety of models and languages from
different tools, potentially having different syntax and semantics. Although it is of course
required to model M SEM

3 and MAS
3 of the tool the model originates from.

5.6.4 Related Work

The conformance relation plays a crucial role in Model Driven Development (MDE) [32,
279]. But while it has often been studied, it has remained hardcoded in various tools.
Research up to now has mostly focussed on defining different levels of conformance [156]
and new types of conformance, such as relaxed [245] or partial [264]. Nonetheless, they
are hardcoded and partially inflexible as well: tools cannot be extended with additional
conformance relations, nor can existing conformance relations be inspected or manipu-
lated.

Updates to the hardcoded syntax and semantics, such as UML, have resulted in (often
unnecessary) breakage of conformance [89]. As such, old models cannot be loaded in
newer versions of the same tool, if tools update their implementation of the UML. But
whereas a model might still load in a newer version of the UML, nothing guarantees that
the same semantics are used in its evaluation.



98 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

In the multi-level modelling community, many aspects of conformance are still being
investigated, specifically for newly introduced physical attributes. Since it is still very much
a research domain, new additions to the paradigm are introduced at a steady rate. As the
definition of potency was vague, and even in conflict with each other in [27, 81, 82], many
variations of multi-level modelling currently exist [23, 90]. And as we don’t claim that any
is better than the other, all of them has its own reasons to exist.

Problems begin, however, when seperate paradigms start to introduce additional of these
structural constraints. For example leap potency [81], deep multiplicities [25], deep con-
straint languages [24], mutability [22], durability [22], and dual fields [29]. Each of them
has a non-precise semantics, which is mostly hardcoded inside of the tool implementation.
These concepts are thus not easily portable between different paradigms, or even between
different tools. Even worse, as these constraints are defined independently, is the potential
interplay when they are combined [79]. Some of these constraints, like potency, have
already been found out to have a significant impact on all other aspects of (meta-)modelling,
such as model transformations [21, 84, 323]. And since many of these constraints are only
supported by one or so tool, model interoperability is lost completely, requiring models
to be written out in a different form that encodes the same information, but without these
special constructs [130].

When models are exchanged, the first thoughts are of the technological problems: how to
transfer the data from one tool to another. Various serialization formats were conceived for
this problem, such as XMI and JSON. Nonetheless, they limit themselves to transfering
data only, not the actual model. Essentially, MAS

2 is exchanged, but MAS
3 and M SEM

3 are not.
As such, models can be exchanged, assuming that both tools implement the same MAS

3 and
M SEM

3 . Should they differ, the exchanged data becomes semantically meaningless.

This brings us to model repositories, which, using this approach, often resort to semantically
meaningless model exchange. For example, ReMoDD [112], being as general as possible,
sacrifices model semantics: uploaded models have only marginally more semantics than
arbitrary files. Advanced operations, which rely on the semantics of these models, are not
supported. Another solution, as taken by MDEForge [36], is to restrict exchanged models
to its own MAS

3 and M SEM
3 . This allows them to actually use the models, for example for

model transformations [99], though they do so by limiting the set of supported tools.

A posteriori typing [83] has been proposed as a way to have multiple types for a single
model. But whereas our approach does not consider any conformance relation as special, a
posteriori typing starts from a special relation: the constructive type. The constructive type
is the type used to instantiate the model, and cannot be changed. All other types, discovered
on-the-fly, are completely flexible. Even though multiple meta-models can be found for a
single model, all conformance relations must use the same MAS

3 and M SEM
3 . As such, only

MAS
2 can change, and not MAS

3 nor M SEM
3 , though this provides sufficient knowledge to

reuse operations between different meta-models. Concepts [80] serve a similar purpose,
but also with similar restrictions: there is only freedom at MAS

2 .

Another problem, which we did not tackle here, is which constraint language is used.
While there are some standards defined, such as OCL [3] or EOL [164], many tools
deviate from these to allow for their own special constructs. Examples are MetaDepth’s
extended EOL [81] and ETL [84] and merging with Java [79], Melanie’s deep constraint
language [24], Nivel’s Weighted Constraint Rule Language [19], and GeMoC’s Event



5.7. PHYSICAL TYPE MODEL 99

Constraint Language [174]. So not only the instantiation and conformance semantics are
incompatible, but even the used constraint languages don’t match with each other.

5.6.5 Link to Requirements

Explicitly modelling conformance, and allowing for multiple conformance relations si-
multaneously, has an influence on Requirement 1 (Language Engineering), Require-
ment 2 (Activities), Requirement 7 (Model Sharing), and Requirement 10 (Portabil-
ity).

Requirement 1 (Language Engineering) is influenced due to the reliance on meta-model
constructs. A language engineer often makes use of specific constructs that are known by the
conformance check, such as inheritance, multiplicities, potencies, and so on. The semantics
of these concepts, however, is often only defined in the tool implementation

Requirement 2 (Activities) is influenced, as the multiple conformance relations can have
an influence on which “view” on the model is taken during the activity. For example, when
a model conforms to multiple metamodels, the correct meta-hierarchy of this model is
automatically selected based on the signature of the activity.

Requirement 7 (Model Sharing) is influenced, as sharing models between tools requires
the presence of an explicitly modelled meta-circular level and conformance relation, to be
able to “mimic” the other tool.

Requirement 10 (Portability) is influenced as most of this semantics is normally hard-
coded in the tool, making porting difficult, as all the semantics must be identically copied
and reimplemented. By modelling this explicitly in a neutral language, such as the Action
Language, these operations become portable across different platforms.

Summary

The conformance algorithm is of utmost importance in any (meta-)modelling tool, as it
is used to manage the meta-hierarcy. It is, however, hardcoded in most tools, resulting in
different implementations, and therefore incompatibilities between tools. These incom-
patibilities, both syntactical and semantical, result in difficulties with meaningful model
exchange: models are grafted on the tool’s implementation. By explicitly modelling all
aspects of the conformance relation, both abstract syntax and semantics, models become
grafted on another model, which can also be exchanged. Furthermore, a single model can
conform using multiple such semantics, potentially to different abstract syntax definitions
as well.

5.7 Physical Type Model
Another dimension of the conformance relation is the physical dimension. The physical
dimension defines how models are physically represented on the implementation platform,
such as Python or Java. We call the metamodel in this dimension the Physical Type Model
(PTM). Possibly, models can be stored in a relational database, in which case their physical
type model resembles, for example, SQL.



100 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Ideally, the modeller is unaware of the physical dimension. The language engineer and
Modelverse developer, however, often require access to the physical level. For the lan-
guage engineer, some operations might be generic and applicable to multiple languages
simultaneously, in which case a more generic means of access is required. For example,
querying all edges does not depend on the language that is being used, and should therefore
be done at the physical level. For the Modelverse developer, most of the core library
functions are implemented in a language-independent way, often crossing multiple levels in
the meta-hierarchy. For example, the conformance algorithm naturally spans two languages,
the instance and type model, and is therefore implemented at the physical level. By having
these users rely on the physical type model, changes to the physical type model are not
allowed, as they would break many operations.

5.7.1 Motivation

One of the shortcomings of current (meta-)modelling tools is their strong reliance on the
implementation level. This reliance ranges from exposing the general purpose implemen-
tation language used (e.g., Java), to requiring some operations to operate directly on the
internal data representation of the models (e.g., XMI). Tools voluntarily chose for this
strong reliance for several pragmatic reasons: the implementation language and internal data
representation already exist and are sufficiently mature. Additionally, the used algorithms
(e.g., for model management) are complex and often operate at a lower level than other
operations: they need access to the internal data representation [15, 273]. We consider
some of these problems in more detail.

First, tool developers are familiar with some mature programming language, which has
extensive tool support, such as efficient compilers, debuggers, and code analyzers. Addi-
tionally, many libraries are available for use, such as graphical libraries, parsers, and data
structures. It is therefore logical that they wish to reuse as much of this as possible, thereby
becoming more and more dependent on this language and its features.

Second, explicitly modelling generic algorithms is non-trivial, as they often span multiple
levels in the meta-hierarchy. An example is shown in Figure 5.14, where a petri net model
linguistically conforms to a simple petri net metamodel. A conformance algorithm needs
access to the metamodel (e.g., Place) and the model (e.g., a place), to check whether they
conform. The conformance algorithm itself, however, needs access to both layers, as shown
in Figure 5.14, which is impossible in a strict metamodelling hierarchy. As noticed in the
Figure, this strictness violation is not present when going to the physical dimension (i.e., to
the implementation).

Third, the conformance algorithm is generic and applicable to more domains than only Petri
Nets. As such, implementing it for Petri Nets concepts only is wasteful. When implemented
in the physical domain, generic concepts can be used (such as node and edge), thereby
making it applicable to all domains.

Manipulations at this lowest level are not easy to model, as the physical level is often
obfuscated itself. For example, megamodelling [43, 44] often requires additional links
between models (e.g., traceability, inheritance, materialization), which the UML leaves
implicit [247]. The semantics of these links is thus also ported to the physical level, making
it difficult to reuse existing database systems, since the database has to be augmented with



5.7. PHYSICAL TYPE MODEL 101

MM

M

Place Transition

Algorithm

PhysicalLinguistic

Class

Object

Figure 5.14: An algorithm spanning multiple layers in the linguistic dimension, violating
strict metamodelling.

meta-modelling concepts [274]. By not reusing existing database systems, it becomes
impossible to reuse advances in this research domain.

The disadvantages are significant, as algorithms become grafted on the tool, just like
conformance was grafted on the tool’s implementation. We consider two disadvantages: (1)
the tool implementation must remain fixed and (2) it is difficult to reuse algorithms from
other tools.

The tool implementation must remain fixed, as algorithms intimately depend on the internal
API and the details of the data structure. Should, for example, the internal data representa-
tion be changed ever so slightly (e.g., add a new physical attribute), all generic algorithms
become incompatible. Similarly, if the tool is ported from one implementation language to
the other (e.g., from Python to C, for efficiency), all Python code has to be ported to C as
well.

Reusing existing algorithms also becomes difficult, thus hindering portability and reuse.
This is especially important in the scientific community, where new or updated algorithms
are continuously introduced to further the state of the art. These algorithms then strongly
rely on the internal representation of models, such as XMI or graphs. Implementing these
algorithms in a tool with a different internal representation proves challenging due to the
different assumptions that were be made and the different API of this data structure. For
example, an algorithm that assumes it is working on a graph-like model is non-trivial to
implement on a model that is stored in a relational database.

To counter these disadvantages, we combine the best of both worlds: we explicitly model
the PTM in the linguistic domain, thereby shifting all physical operations to linguistic
activities. This makes such activities portable between different tools, and independent of
the actual PTM that is implemented. In essence, this is similar to explicitly modelling the
conformance relation: the physical representation of models becomes grafted on another
model, instead of on the tool’s implementation.

5.7.2 Model

Recall that relying on the physical type model was the main cause of the problems we have
previously observed. To counter these problems, we undertake several steps: we copy the



102 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Node

Type Action

Float

Integer

Boolean String

Figure 5.15: LTM⊥, allowing for any element to connect to any other element.

PTM to the linguistic domain, use it in a multi-conformance setting, and then shift existing
physical operations to this dimension.

Moving Away from the Physical Type Model

There is a natural relation between both physical and linguistic metamodels, as both are
related to the structure of the model. To do this, we define a new metamodel, which
is identical to the (implicit) metamodel of the implementation layer (the PTM). This
metamodel, however, is defined in the linguistic dimension, thus making it explicit. For
clarity in our discussion, we call this metamodel LTM⊥, shown in Figure 5.15. It can be
seen that it is a metamodel for basic graphs, where nodes might have values. These possible
values are Type (the type of any value type, including itself), Action (the type for all action
language constructs, such as While, If, and FunctionCall.), Integer, Float, Boolean, and
String. Additionaly, edges are a subclass of nodes, meaning that they can have incoming
and outgoing edges themself. Since every element is a subclass of Node, an edge can start
and end at any element, including itself. As this is only at the conceptual level, it was done
to make reasoning about edges from edges conceptually clearer. The leftmost association
from Node to itself represents the type of inheritance relations: since inheritance relations
are also explicitly modelled [314], they require their own metamodel. And since the LTM⊥
should be self-describing, it contains this type too.

Since any model conforms to the (often implicit) physical metamodel in the physical
dimension, they should also, by definition, conform linguistically to LTM⊥. We call this
new linguistic conformance to LTM⊥ conformance⊥. While it is actually the same as
conformance in the physical dimension, we shift this to the linguistic dimension to offer it to
the users. Thanks to the possibility for multiple metamodels for a single metamodel [314],
it is possible for the model to be typed by multiple linguistic metamodels: LTM⊥, and the
original linguistic metamodel(s). Figure 5.16 shows the 1-to-1 mapping of the PTM to the
linguistic dimension. As each element necessarily conforms to the PTM, it will also, by
definition, conform to the new LTM⊥.



5.7. PHYSICAL TYPE MODEL 103

PhysicalLinguistic

Node

Type Action

Float

Integer

Boolean String

Node

Type Action

Float

Integer

Boolean String

Place Transition

1-to-1 mapping

Figure 5.16: LTM⊥ added in the linguistic dimension, which is identical to the one in the
physical dimension.

Coping with Strict Metamodelling

By lifting the physical conformance relation up to the linguistic conformance dimension,
we achieve a way of explicitly modelling, albeit indirectly, in the physical dimension.
Users are therefore able to, using their normal linguistic modelling tools, alter the physical
dimension. The physical representation of the model is thus seen as an instance of a
linguistic metamodel.

While the tool still complies to strict metamodelling in the linguistic dimension, LTM⊥
is taken so general, that the complete metamodelling hierarchy can be expressed as a
direct instance of it. This effectively flattens the original metamodelling hierarchy into
a single level: LTM⊥ at the metamodelling level, and everything else at the modelling
level. In this single model level, which is only a different view on the same model, strict
metamodelling does not restrict anything, even links between different levels (of the original
hierarchy). Figure 5.17 represents the two possible views on the modelling hierarchy: either
through the usual conformance relation (Figure 5.17a), or the new conformance⊥ relation
(Figure 5.17b).

Depending on the used metamodel and conformance relation, strict metamodelling can thus
be interpreted differently. Note that this is still distinct from dropping strict metamodelling
completely: strict metamodelling is still used throughout the complete environment, and
still imposed on instances, even with the conformance⊥ relation. But the implications of
strict metamodelling depend entirely on the metamodel: for normal linguistic metamodels,
strict metamodelling is as it was originally designed, but for the special metamodel LTM⊥,
strict metamodelling does not constrain anything because every element is at the same
level.

Coping with strict metamodelling alone does not solve all problems. While the limitation



104 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

PTM

my_PN

PN

MMCL

(a) Petri Nets metamodel

LTM⊥

PTM

my_PN PN MMCL

(b) LTM⊥

Figure 5.17: Different modelling hierarchies for the model my PN, as seen through two
different linguistic views.

of not being able to model executable models across levels was removed, these executable
models still directly interact with the underlying data structure. This is still a lingering
aspect of the physical dimension, which we tackle next.

Abstracting Implementation Details

The 1-to-1 mapping between the physical metamodel and LTM⊥ made it possible to
linguistically access the physical dimension. But the physical dimension is still part of
the implementation, and could therefore change in subsequent versions. This would bring
us to language evolution, as LTM⊥, and possibly conformance⊥, would also have to
be updated, together with all saved models. While some advances are made to language
evolution in order to do these changes automatically, we don’t want to expose users to these
problems.

Users should therefore not be bothered with the internals of the tool, not even the physical
data representation. And while users do need access to a physical-like representation,
it can certainly be a different one than that which was implemented, as long as there
exists a mapping between them. LTM⊥ is thus merely a wrapper, or an abstraction of
the actual data structure being used. Modifications on instances of LTM⊥ are mapped
over to changes in the physical dimension, and vice versa. This can be done by having
the actually implemented data structure implement an interface as if it were conforming
to LTM⊥. This requires a mapper between LTM⊥ and the physical metamodel, which is
similar to physical mappers [295]. Now, however, the mapping is only defined for a single
metamodel, instead of for each metametamodel individually, greatly relieving users. This is
the mapping shown in Figure 5.18.

Decoupling the implementation of algorithms from the actual internal data structure makes
it possible to perform drastic changes internally (e.g., switching between database tech-
nologies), without any change whatsoever to the explicit models of model management
operations, nor to LTM⊥ or conformance⊥. Related to this, different tools can implement
exactly the same algorithms, which were explicitly modelled, even if their implementation
language and internal data structure is completely different. They only need to agree on
LTM⊥ and the corresponding conformance⊥, and an explicitly modelled action language
to go along with it. All other implementation choices become truely that: choices made in
the implementation that don’t affect functionality at all.



5.7. PHYSICAL TYPE MODEL 105

PhysicalLinguistic

Node

Type Action

Float

Integer

Boolean String

Place Transition

mapping

SQL

Figure 5.18: Changing the physical metamodel with something else, as long as there is still
a mapping to LTM⊥. SQL metamodel not expanded due to space constraints.

5.7.3 Evaluation

We now evaluate our approach for two of the claimed advantages. First, we show how a
generic model management operation can be executed in the linguistic domain. Second, we
show how the physical type model can be altered, while all existing operations are reused
as-is.

Generic Model Management Operations

As a simple example of our approach, we present here the implementation of a conformance
checking algorithm, invoked with a model (a simple Petri Nets model) and metamodel (a
simplified Petri Nets metamodel) as its parameters.

Thanks to our approach, this model management operation can be explicitly modelled,
thereby making it portable. The conformance algorithm is defined on the LTM⊥ meta-
model, and therefore utilises these concepts. Through multi-conformance, both the Petri
Nets model and metamodel are deemed to conform to LTM⊥, and can thus be passed as
parameters.

The conformance algorithm is related to how models are represented internally: all models
are subgraphs of a single coherent graph. This format of model representation is itself
already level-crossing, as there are edges for navigation. As it contains level-crossing links,
it is an invalid model when viewed through an ordinary linguistic typing relation. It is,
however, viewable and even modifiable using conformance⊥, as the model completely
complies to LTM⊥.

During the execution of the algorithm, the model is viewed not through the usual con-
formance relation, but through the conformance⊥ relation. As such, the model can be



106 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Place Transition

Class

(a) Using normal conformance.

Place Transition

Class

Node

Type Action

Float

Integer

Boolean String

(b) Using conformance⊥.

Figure 5.19: Two different ontological views on the same model. The elements accessed by
the algorithm are shown in light blue. Only conformance⊥ complies with strict metamod-
elling.

modified as if it were merely a graph, without any additional semantics or imposed restric-
tions. Apart from just allowing any kind of structural change, inconsistencies in the usual
conformance relation are also possible: cardinalities, multiplicities, potencies, and so on,
can all be invalidated as their semantics is not checked at this level: the LTM⊥ has no
such constraints. Operations defined by the user, using the normal linguistic conformance
relation, will just reinterpret the graph to the usual linguistic dimension, thus again checking
all additional constraints such as cardinalities.

We use this code to instantiate a new petri net place, as specified by the petri nets metamodel.
The example is visualized in Figure 5.19. Figure 5.19a indicates the problem with the
instantiation algorithm: it accesses itself and three different modelling levels: the model
level to write out the instantiated model, the metamodel level to read out the allowed
attributes and all constraints, and the metametamodel level to know about inheritance links
and how to handle them. Accessed elements are highlighted in the figure, indicating that the
algorithm requires access (and thus, links) to all these levels. It is therefore impossible to add
it at either of these levels: adding it to one level would cause violations for the other levels.
By taking the conformance⊥ view, the modelling hierarchy changes from Figure 5.19a
to Figure 5.19b, in which there are no level-crossing links anymore. In Figure 5.19b, all
access are again highlighted, but are now within the same level in the modelling hierarchy.
There is therefore no longer any violation of strict metamodelling.

The complete procedure is shown in Figure 5.20: first the conformance⊥ view is taken on
the model, where it is shown as a graph instead of a petri net model and metamodel. Second,
this graph is traversed and the requested changes are performed. Finally, the modified graph
model is again interpreted using the original conformance relation, where users use their
own metamodel and corresponding type mapping to interpret the graph.



5.7. PHYSICAL TYPE MODEL 107

Place Transition

Place Transition

Node

Place Transition

Node

Place Transition

(1)

(2)

(3)

Figure 5.20: Overview of the complete procedure: (1) reinterpret the model as instance of
LTM⊥, (2) execute the algorithm on the graph representation, (3) reinterpret the model
again using the initial metamodel. All steps happen on the background and the user only
sees the composite operation.

Altering the Physical Type Model

To illustrate that it is possible to alter the implementation of the MvS, we have implemented
multiple MvS implementations in the Modelverse. Apart from a simple MvS implementa-
tion whose PTM is identical to the LTM⊥, an RDF-based implementation was also created.
With the RDF-based implementation, exactly the same LTM⊥ is used, and users therefore
don’t notice the difference, as they never have to access the physical domain anymore. A
new mapping between LTM⊥ had to be created, however, as of course it is necessary to
map operations on LTM⊥ to the physical domain, and thus on the actual PTM.

This mapping is done in code, and is therefore not modelled explicitly. In essence,
this means that the PTM should have an interface that has an API at the level of the
LTM⊥.

For RDF, the PTM is a triplestore, saving data in the form of (source, name, destination).
While this can also be used as a way of storing nodes and edges, it is not necessarily the
most appropriate format for doing so. All modifications on this triplestore are implemented
using SparQL queries. All code in the Modelverse relies only on the LTM⊥, and therefore
the switch to a different PTM is not noticeable to any user. A difference is noticeable,
however, in terms of performance: some models are naturally better fit to be stored in one
format than another.



108 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

1 def read_dict(self, node, value):
2 if not isinstance(node, rdflib.URIRef):
3 return None
4 if not self.is_valid_datavalue(value):
5 return None
6

7 q = """
8 SELECT ?value_node
9 WHERE {

10 ?main_edge MV:hasSource <%s> ;
11 MV:hasTarget ?value_node .
12 ?attr_edge MV:hasSource ?main_edge ;
13 MV:hasTarget ?attr_node .
14 ?attr_node MV:hasValue ’%s’ .
15 }
16 """ % (node, json.dumps(value))
17 result = self.graph.query(q)
18 if len(result) == 0:
19 return None
20 if len(result) != 1:
21 raise Exception("Error!")
22 return list(result)[0][0]

Listing 5.6: SPARQL query for read dict

An example of such a mapping to RDF for the read dict operation is shown in Listing 5.6.
This listing presents the Python code for this operation, using the rdflib RDF library with
SPARQL queries.

5.7.4 Related Work

Three main dimensions of related work exist.

First, our approach builds upon the support for multiple linguistic types. While we have
used our approach [314], another possible direction is through by a-posteriori typing [83].
In a-posteriori typing, a model is constructed with a single constructive type [27], which
cannot be changed. When a model is used in a different context, however, multiple
additional types can be added afterwards (a posteriori) through the use of concepts [80].
These additional types don’t influence the original constructive type, but can make the
model applicable for use in other algorithms. Supporting our conformance⊥ relation
through the use of a-posteriori typing should be similar. The constructive type could
simply be part of LTM⊥, with all “real” linguistic types specified as a posteriori types.
Our approach varies a bit though, since we don’t make the constructive type a special
kind of type: the conformance⊥ is just another relation like any other. The Orthogonal
Classification Architecture (OCA) [32] is rather similar to our approach, as it identified the
distinction between two conformance relations. But whereas the OCA shifts one of these
relations to the implementation level, we merge the physical type model into the linguistic
dimension. We therefore still completely comply to the OCA: we have both a linguistic
dimension (used for user modelling), and a physical dimension (used during tool building).
Parts of our physical dimension are, however, exposed to the linguistic dimension, such
that all operations from the physical dimension also become available in the linguistic
dimension. With the OCA it is not necessary to support multiple linguistic types for a
single model, which is a necessary requirement when shifting more parts to the linguistic
dimension.



5.7. PHYSICAL TYPE MODEL 109

Second, strict metamodelling has been the subject of several debates, both in favor [28, 32],
and against [66, 138]. People against strict metamodelling argue that strict metamodelling
makes specific models impossible, as we have also shown in this paper. Their solutions,
however, often completely throw away all notions of strict metamodelling. And while
we agree that strict metamodelling can be overly restrictive, it certainly has its advan-
tages in protecting ordinary users and simplifying algorithms. So in contrast to tools like
XMF-Mosaic [66], who completely flatten the modelling hierarchy, we still enforce strict
metamodelling, though users can switch to the “unrestricted mode” by taking on a different
linguistic type model. Since the unrestricted mode is at a much lower level of abstraction
than the usual linguistic metamodels, users will now have more powerful tools at their
disposal, and are able to circumvent strict metamodelling in a controlled way.

Third, many tools rely explicitly on the implementation level. For example, MMINT [100],
MetaDepth [79], DISTIL [190], AToM3 [86], and AToMPM [273] all explicitly allow users
to inject code, for example as parts of models, or to extend the capabilities of the tool.
Since this code is dependent on both the application interface (API), the implementation
language, and the internal data structures, the code is not portable at all. For example,
megamodel management [246] is often implemented purely at the implementation level
instead of explicitly modelled. And while there is some work on making generic model
management possible [237, 325], these approaches often remain specific to the problem
under study.

5.7.5 Dynamic PTM Optimization using Activity Models
By making the PTM changeable, possibly at runtime, it becomes possible to optimize the
PTM based on the models that we are modifying. For this, we link to the domain of activity
models, which we have investigated in the domain of DEVS simulation [303, 307, 315].
We briefly present this work here, and then elaborate on how this can be applied in the
Modelverse as future work.

Activity Models in DEVS

DEVS is a popular formalism to model system behaviour using a “discrete-event” abstrac-
tion. It frequently serves as a simulation “assembly language” to which models in other
formalisms are translated, either giving meaning to new (domain-specific) languages, or
reproducing semantics of existing languages [319]. Models in different formalisms can
hence be meaningfully combined by mapping them onto DEVS.

But while domain-specific simulators can make internal optimizations based on many
assumptions, this is not possible for a general purpose formalism such as DEVS. The
mapping to DEVS, therefore implies reduced performance, as information is lost in the
translation to a semantically equivalent model, executed in a domain-agnostic simulator.
Through the use of activity models, we attempt to encode this domain information and
make it available within the DEVS simulator [303, 307, 315].

Resource Usage-based Optimization We illustrate the use of activity models through a
well-known optimization: load balancing. When a model is being simulated over multiple
processes, it can be detected that some processes have more work to do than others. In



110 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

reaction to this, the model allocation can be altered, thereby balancing the load of the
simulation. It is important to note that this new allocation is based on the measured load
during the execution, and therefore relies on the past. As such, load balancing always
optimizes the future for values measured in the past. It can therefore be the case that load
balancing lags behind and is actually counter-productive, should it “optimize” and actually
make the allocation worse for the future.

For example, Figure 5.21 shows a snapshot of an air traffic simulation, with each yellow
dot indicating a plane. The current core allocation is also shown, putting America and
Europe/Africa on the same core, and Asia on another. Somewhat later, the load changes to
the situation shown in Figure 5.22, where load balancing detects that the load is no longer
balanced. As such, load balancing changes the allocation as shown in Figure 5.23, where
now America is put on its own core, with Europe/Africa and Asia sharing the other one.
While the load is now again balanced, it is quickly disturbed again. Depending on how fast
simulation progresses, load balancing lags behind, causing load balancing to actually be
counter-productive in this case: the allocation shown in Figure 5.23 is soon outdated when
it becomes night in America.

Encoding Domain Knowledge Load balancing based its knowledge on the measured
values during the running simulation. Much of this knowledge, however, is inherent to
the domain and is known a-priori by the modellers, but not known by the simulator. For
example, with air traffic, it is well known that there are not as many flights at night than
during daytime. In our case, load balancing has similar results, but takes some time to
measure the current load, and only afterwards does it balance based on this. As the past
is used to optimize for the future, this might not be a correct prediction: as daytime shifts
throughout the simulation, so does the load. When the load is analyzed for the situation
shown in Figure 5.22, Figure 5.23 is a logical result based on the currently observed load. In
the near future, however, the load will continue to shift, maybe making the load balancing
overhead higher than the expected gains.

By encoding some domain knowledge, for example the mere fact that night implies not a lot
of air traffic and thus not a lot of load, it becomes much easier to determine the allocation.
Indeed, instead of measuring the execution over some time period and making assumptions
based on that, we can make statements based on the current situation, without taking into
account the past. While this does not decrease the load balancing overhead too much,
allocations can be made before the load changes. For example, if it just became daytime
on a continent, load balancing mostly ignores this continent, as not much load has been
measured here in the past. With domain-knowledge, however, we can assume that if it
is morning, there is already some load. The duration in which the allocation is optimal
therefore becomes longer, making the allocation more worthwhile.

Resource Usage Predictions A logical extension to this is to predict what will happen
in the near future. Load balancing actually tries to do this by looking into the past and
assuming that the future will be highly similar to the past. This is, however, not always the
case. Even looking at the current situation might not be sufficient to come up with a good
allocation, depending on how fast the load migrates throughout the simulation. Another
factor to take into account is how much performance gain we project to achieve through
this optimization. For example, the load might shift so fast that the overhead of performing



5.7. PHYSICAL TYPE MODEL 111

CORE 1 CORE 2

Figure 5.21: Snapshot of air traffic simulation load distribution at start of simulation.

CORE 1 CORE 2

Figure 5.22: Snapshot of air traffic simulation load distribution during simulation.

CORE 1 CORE 2

Figure 5.23: Snapshot of air traffic simulation load distribution after load balancing.



112 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.24: Activity as an optional extension to both the model and simulator.

the migration is not worth it compared to the performance improvement that we expect. By
making such predictions, it actually becomes possible to optimize for the future, instead of
for the past.

Such predictions can happen through the use of an activity model. This activity model is a
model similar to the model being simulated, but probably in a different formalism and at a
higher level of abstraction. When predictions about the load distribution in the future are
made, this abstract model can be simulated to determine the likely load distribution. Due
to the level of abstraction, this projected load distribution is likely not correct, and might
indeed be completely incorrect. It is therefore important to guarantee that, independent of
the results given by the activity model, simulation will always give correct results. This
activity model is only an extension to the model being simulated: results should be correct
whether or not the activity model is used. Simulators that can make use of this additional
information are called “activity-aware”. Both the activity model and activity-awareness in
the simulator are optional: only if both are provided, is the activity information actually
used. This allows for portability of the model with activity-unaware tools. This is shown in
Figure 5.24.

Results Results for a simplified city-layout model are shown in Figure 5.26 for a model
structured as in Figure 5.25. This city-layout model simulates the behaviour of car traffic in
rush hour, with several “residential areas” (traffic source) and “commercial areas” (traffic
destination). When going from the residential to the commercial areas, cars have to pass
through several districts, which can be the atomic units for load balancing. The results
include four different configurations. The first is “no activity tracking”, which does no
balancing of the load at all: in the beginning of the simulation each process is assigned
an equal number of districts. The second is “activity tracking”, which is equivalent to
load balancing: execution times in the past are used to optimize for the future. The third
is “custom activity tracking”, which looks at the current configuration (e.g., number of
cars in a district) and optimizes for that. The fourth is “custom activity prediction”, which
looks at the current configuration to make predictions about the future. Results indicate
that the use of load balancing indeed increases performance in some situation (where the



5.7. PHYSICAL TYPE MODEL 113

Directions

Core 0 Core 1

Commercial

Road segment

Residential

Intersection

Figure 5.25: Simplified city lay-out model.

 1000

 1500

 2000

 2500

 3000

 3500

 0  100  200  300  400  500  600  700  800

T
im

e
 (

s
)

Microseconds artificial load

Citylayout model for different migrators (5 cores)

No migration
Activity tracking

Custom activity tracking
Custom activity Prediction

Figure 5.26: Execution time results for the city layout model.

history is an accurate representation of the future), but actually decreases performance in
other scenarios. This is due to the past being non-representative for the future, causing
changes to be ineffective, while still inducing the load balancing overhead. Using custom
activity, which has domain knowledge encoded in it, results are always faster than no
activity tracking, as the past is ignored and only the current situation is considered. No
significant benefits are seen from prediction in this case, as the present is sufficient to
determine the future.

Data Structure Optimization Up to now we have only considered the use of activity
models for load balancing, to optimize the allocation of models during runtime. Other



114 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Average case Worst case
List O(n) O(n)
Heap O(k · log(n)) O(n · log(n))

Table 5.1: Complexity of different scheduler types. k is the number of imminent models
and n is the total number of models in the simulation.

applications are possible as well, such as for chosing the optimal scheduling data structure.
Indeed, depending on the domain, the optimal scheduling data structure varies. We consider
two types of scheduling data structure: a heap (with the usual operations) and a list (which
is iterated over to find the lowest entry). For the heap, the usual heap push and heap pop
operations are required to manage the data structure, both having complexity O(log(n))
for a single element. For the list, the list is always completely iterated to find the earliest
element, having a complexity of O(n) for all elements. These complexities are shown in
Table 5.1. We consider two parameters: k being the number of imminent models and n
the total number of models in the simulation. An imminent model is a model that is about
to transition at the next point in simulated time. There can be multiple such models, if
multiple models execute their transition at the same point in simulated time. We notice that
if several models are imminent simultaneously, the heap might not be the most efficient data
structure, as its complexity goes to O(n · log(n)), compared to the O(n) of the list.

Which data structure is ideal depends on the pattern exhibited by the model, which is often
tightly related to the domain. For example, firespread simulation [206] is often done using
discrete-time simulation, for which the list-based approach is ideal. As such, we have
defined a “polymorphic” scheduling data structure, which adapts its internal representation
depending on the access patterns that it notices. When many imminent models are detected,
the heap is restructured to a list, and when few imminent models are detected, the list
is restructured to a heap. Performance results are shown in Figure 5.27. All results are
normalized to the polymorphic data structure, showing that the polymorphic data structure
is always close to the fastest structure, independent of the percentage of “collisions” (i.e.,
imminent models). While in most cases, the polymorphic is only slightly slower than the
fastest scheduler, it is always significantly faster than the slowest scheduler.

Another use case is when the ideal data structure changes throughout the simulation, for
example because there are different phases in the simulation: some with many imminent
models, and some with few imminent models. Performance results are shown in Figure 5.28.
The same simulation is ran with the three scheduling data structures, showing that the
polymorphic scheduler is again always closest to the fastest data structure. Despite the
additional overhead of monitoring access patterns, the polymorphic scheduler is the fastest
scheduler overall, as it always picks the best option. It is thus possible that the overhead is
mitigated.

Protocol Optimization Another optimization that is possible, is chosing the correct syn-
chronization protocol for parallel simulation. The synchronization protocol is responsible
for how the different processes, which are at different points in simulated time, are to
synchronize their data in a consistent way. If no synchronization protocol were to be used,
simulation results would be incorrect.



5.7. PHYSICAL TYPE MODEL 115

 90

 95

 100

 105

 110

 115

 120

 0  10  20  30  40  50  60  70  80  90  100

T
im

e
 t
a
k
e
n
 (

%
)

Number of collisions (%)

Performance of three schedulers

HeapSet
Minimal List
Polymorphic

Figure 5.27: Results of using the polymor-
phic scheduler data structure, normalized
for the polymorphic scheduler.

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Phase

Wall clock time required for a fixed simulation time

polymorphic
heap-based

list-based

Figure 5.28: Results of using the polymor-
phic scheduler data structure with different
phases.

Roughly speaking, there are two categories of synchronization protocol: conservative and
optimistic [115]. Conservative synchronization allows each process to progress up to some
point in simulated time, calculated based on guarantees given by the processes. When
the predefined time is reached, the process pauses until it receives a new guarantee. This
protocol is highly efficient when strong guarantees can be made, but can easily grind to a
halt if no such guarantee can be made. Optimistic synchronization allows each process to
progress as fast as possible, but accounts for so-called straggler events. A straggler event is
an event that should have occured in the past of the process that receives it. To still process
the straggler event, simulation has to be rolled back to that point in time, when the event
can be processed as usual. This protocol is highly efficient when communication is only
sporadic and if the load is nicely distributed, but can easily grind to a halt if many rollbacks
are required.

There are thus two synchronization protocols with widely different performance [117].
Depending on the model being simulated, the synchronization protocol has to be chosen.
This is problematic, however, as modellers can often not foresee the exact behaviour of
their model. Even if they can, the type of synchronization protocol is an implementation
detail that is far from the problem domain, and as such modellers are either not aware of it,
or don’t fully understand the implications.

Current DEVS simulators have often only implemented a single synchronization protocol,
thereby rendering the choice unnecessary. This is not the soluation, however, as a model
might then simply become unsuited for the simulator in terms of performance. Depending
on the configuration of the model, the ideal type of synchronization protocol might even
change.

One such example benchmark is shown in Figure 5.29, where the percentage of priority
events, which depends on a parameter, influences the ideal synchronization protocol. The
model is the usual PHOLD performance benchmark [116], but extended with high-priority
events. High-priority events are events that are sent nearly instantaneously. Such events



116 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.29: Performance of conservative and optimistic synchronization for the modified
PHold model.

decrease the guarantees that can be made, as the chance of such a high-priority event
must be taken into account. When nearly no such events are sent, however, we see that
conservative (CN) synchronization suffers: high-priority events are taken into account,
but almost never occur. The full potential is then only achieved with optimistic (ON)
synchronization, which does not rely on such guarantees. When almost all events are high-
priority events, the guarantees actually become representative of what is to be expected,
and conservative synchronization becomes better. Optimistic synchronization now suffers,
as these high-priority events cause rollbacks.

It is thus important that a single DEVS simulator implements both types of synchronization
protocol, to adapt to the model, instead of vice versa. Our tool Dxex [59] was extended
with multiple synchronization protocols, which can be switched at runtime [60]. By making
this choice at runtime, based on the number of rollbacks or the guarantees that are received,
the simulator can switch synchronization protocol, thereby increasing performance. As the
model’s behaviour and resource usage is used to optimize the running simulation, this is
considered to be an activity-based optimization as well.

Relation to Machine Learning This approach bears some similarities to machine learn-
ing, they are complementary. Machine learning can be used to find complex patterns,
though does not depend on domain knowledge directly. It might therefore be possible that
some patterns are learned that make no sense in general. Nonetheless, machine learning can
automatically find complex activity models that would be too complex for domain experts
to code. The use of activity models explicitly relies on domain experts providing additional
information, which domain experts believe to be correct. In the limit, it could be possible
to use machine learning to come up with activity models, which are further augmented by
the domain expert, or vice versa.

Activity Models in the Modelverse

The previously mentioned results were obtained by applying activity in the context of DEVS
simulation. Going back to the Modelverse, we believe that similar results can be achieved
in the context of the Modelverse. Indeed, the Modelverse also makes several decisions that



5.7. PHYSICAL TYPE MODEL 117

could potentially be optimized, such as the choice for the PTM to use. Depending on the
chosen PTM, the performance can hugely vary: if a matrix-like model is stored using a
PTM for matrices, all matrix operations become native operations. If, on the other hand,
this same matrix-like model is stored using a generic graph-like PTM, then these same
operations can become complex graph operations.

Thanks to the explicitly modelled PTM, which is actually the LTM⊥, it became possible
to alter the PTM without any effect on the operations and models. As such, an activity
model, related to the models in the Modelverse, can be used to hint the Modelverse to
use a different PTM for this model specifically. This dynamic switching of PTM, and in
particular based on hints of an activity model, is future work at the moment. Nonetheless,
our previous experience with activity models indicates that this optimization would have
significant potential.

Summary

As the PTM no longer has to be static, it becomes possible to optimize the choice of
PTM based on execution information. In the domain of DEVS simulation, previous work
showed the potential benefit of optimizing the runtime for the model. An example was the
optimization of the internal data structure depending on access patterns that were noticed
and predicted for the future. For the Modelverse, it would similarly be possible to optimize
the PTM depending on the type of model we are manipulating. For example, a model
representing a matrix could be stored in a native matrix storage format, instead of as a graph
structure. We project this to have a significant benefit in terms of performance and memory
consumption.

5.7.6 Link to Requirements

Explicitly modelling the physical type model, and allowing users linguistic access to it,
has an influence on Requirement 1 (Language engineering), Requirement 2 (Activities)
and Requirement 10 (Portability).

Requirement 1 (Language engineering) is influenced, as the new LTM⊥ formalism can
be considered as a “new” language in which model management operations can be modelled.
The activity-based optimizations could certainly be of use when domain-specific languages
are modelled that are not necessarily best represented as a graph (e.g., matrices).

Requirement 2 (Activities) is influenced, as activities can now also be used to define the
low-level operations on the model, which normally would have to be implemented on the
physical representation of the model directly. This therefore extends the applicability of
activities: both model transformations and procedural code.

Requirement 10 (Portability) is influenced, as the physical type model now becomes
independent of the operations that ordinarily operate at that level (e.g., model management).
As the physical type model is now split from the models at which all low-level operations
happen, the physical type model can easily be altered without any influence whatsoever.
This allows divergent implementations of the physical level.



118 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Summary

The Physical Type Model (PTM) stores the physical representation of the model, and is
often accessed to implement generic functions (e.g., conformance checking). For pragmatic
reasons, many model management operations are implemented directly in the language
of the implementation platform (e.g., Java), directly modifying the internal model repre-
sentation (e.g., XMI). Crucial model management operations thus become dependent on
implementation details and are therefore non-portable. By explicitly modelling the PTM in
the linguistic dimension (the LTM⊥), generic functions can be modelled explicitly in the
linguistic dimension. Algorithms can then be modelled explicitly as operating on LTM⊥,
which offers the same benefits as coding them for the PTM, while also having the benefits
of explicitly modelling it. This ensures that model management operations are not grafted
on the tool, but on another model (LTM⊥), thereby offering flexibility. When combined
with the prospect of activity models, this technique can also be used to automatically switch
the PTM depending on which model is being manipulated, for example for increased
performance.

5.8 Service Orchestration

As the Modelverse supports a procedural action language, most algorithms can be directly
implemented in the Modelverse. Reimplementing all algorithms in the Modelverse, how-
ever, incurs several problems. First, the algorithm might be much slower in the Modelverse
than in some other programming language or some other tool. For example, many opti-
mizations exist to constructing a reachability graph, which sometimes utilize details of the
language (e.g., data structures, library support). Second, the algorithm might be too difficult
to port in a reasonable amount of time. For example, simulation algorithms of specialized
tools are often the result of multiple man-years of development, making it infeasible to
replicate the effort. Third, this procedural action language might not be the most appropriate
formalism to describe the problem and its solution. For example, logical problems are
ideally solved using logical programming languages, such as ProLog. Therefore, most
algorithms should not be implemented in the Modelverse directly, even though it would be
possible.

Nonetheless, the Modelverse must support such operations, as operating on models is one
of the requirements of the Modelverse. Such external algorithms can be invoked through
the use of services. A service is an external tool that offers a specific operation, which can
be invoked from the Modelverse. This external tool does not have to be a (meta-)modelling
tool, though that is possible. For example, a service could just as well print out a text file,
therefore taking in a model in the Text modelling language. This makes the Modelverse a
“service orchestrator”: existing (proprietary) tools do the heavy lifting, but the Modelverse
orchestrates when to execute them, and on what models to execute them.

An additional dimension to take into account, is that the user can be considered as a service.
Indeed, a service is merely defined as an entity external to the Modelverse, which the
Modelverse can contact to perform a specific action. The Modelverse is oblivious to what
this service is, and it might very well be a human performing some specific (manual)
job.



5.8. SERVICE ORCHESTRATION 119

5.8.1 Motivation

Due to the increasing complexity of today’s systems, not only the number of involved
languages, but also the number of involved tools is increasing. By explicitly modelling
the process, we have define when an external tool is to be invoked (as an activity), but not
how it is to be invoked. Given that these external tools are often complex, and designed as
stand-alone entities, interaction with such tools is non-trivial. To orchestrate such variety of
tools, it is therefore important to define how to interact with them.

Orchestration requires a detailed specification of the interaction protocol with external
services. In manual activities, user input is required, often through a (visual) modelling
and simulation tool (for example, to create a model). In automated activities, a service
(or multiple services) might be invoked and communicated with in an automated way
(for example, to run a simulation). Such interaction protocols exhibit timed, reactive,
and concurrent behaviour, making their formal analysis paramount in industrial-scale
engineering processes. The analysis of the interaction protocols can improve its overall
process with regards to transit time, scheduling, resource utilization, and overall model
consistency. These interactions are, however, typically specified in scripts or program code,
which interface with the API of the tools providing the services. Such an encoding of the
interaction protocols inhibits their formal analysis.

Activities can be hardcoded, but code is arguably not the optimal formalism to describe an
activity. While activities can be limited to executing some local computation, it frequently
requires external tool interaction. Such external tools can be anything, for example a
(highly-optimized) simulator, or a modelling tool. In such cases, hardcoding the potentially
complex interaction protocol is far from ideal. Indeed, the behaviour of protocols exhibits
timing (e.g., network timeouts, delays), reactivity (e.g., responding to an incoming message),
and concurrency (e.g., orchestrating multiple tools concurrently).

We propose to explicitly model the external service interaction protocols in the activities
of engineering processes using SCCD [298], a variant of Statecharts [133]. SCCD is
appropriate for modelling timed, reactive, autonomous, and dynamic-structure behaviour,
as it has native constructs available for it. Indeed, concurrency is supported by orthogonal
components and dynamic structure, reactivity is supported by event-based transitions, and
timeouts are supported by after events. This facilitates the implementation of the interaction
protocols, and enables future analysis of the service orchestration.

Motivating Example

Our motivating example is in the domain of optimization. A set of configuration parameters
go into the activity and the ideal configuration, including its cost, come out. For example,
the number of traffic signals in a fixed-length railway system. The system consists of
sequences of railway segments, each guarded by a single traffic signal. For safety reasons,
only one train is allowed on each railway segment, despite the segment being longer.
Adding more traffic signals increases the throughput of the system, though also increases
the cost of maintenance. The ideal number of traffic signals is therefore dependent on
the characteristics of the system (e.g., train inter-arrival time, acceleration, total length
of the track). An example process for this is shown in Figure 5.30, which includes the
optimization as yet another activity.



120 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.30: Process model of the example.

We consider the optimization problem in the context of the DEVS formalism [338], which
is often used to assess the performance of queueing networks. The incoming model is
simulated for a fixed set of parameters, with some other parameters being varied. All
simulation results are collected, the cost function is evaluated for all of them, and the
configuration with the minimal cost is returned. In essence, the same simulation is ran with
slightly different parameters. This is, however, embarassingly parallel: each simulation run
is independent of every other simulation run. Therefore, we desire to run some simulations
in parallel. Doing this the usual way (i.e., with code) is non-trivial: concurrency requires
threads (which is problematic [176]), reactivity requires the use of a main loop (possibly
with polling), and timeouts require interruptable sleep calls.

5.8.2 Model

Activities are the atomic actions being executed throughout the enactment of the process.
Up to now, we were agnostic of what is the content of the activity, as we merely require it to
be executable. Most often, it is hardcoded in some programming language or provided as an
executable binary. When control is passed to a specific activity, the activity executes.

In our running example, we see that these features of SCCD are all required. Concurrency
is required to spawn several instances of the simulator concurrently, and the number is only
known at runtime, as it depends on the number of possible configurations. Reactivity is
required to handle the results of these individual simulators, which should be aggregated.
Timeouts are required to handle network timeouts, as the external service is communicated
to over the network, and potential infinite simulations. In Figure 5.31, we show how the
example activity is modelled with SCCD.



5.8. SERVICE ORCHESTRATION 121

AutomaticActivity

- model: Model

- configs: List

- results: SimulationResult

start_activity

initializing check_configs_left

[configs_left()]

collecting_results

creating_object

starting_object

spawning_simulation

/ raise create_instance(Simulation,

                                   model,

                                   params.pop())

instance_created(id) /

raise start_instance(id)

s
im

u
la

ti
o
n
_
d
o
n
e
(r

e
s
u
lt
)

terminated

after(20) /

raise activity_done(min(simulation_results))

[!
c
o
n
fi
g
s
_
le

ft
()

]

in
s
ta

n
c
e
_
s
ta

rt
e
d
(i

d
) 

/

r
a
is
e
 i
d
::

s
ta

rt
_
s
im

u
la

ti
o
n

start_simulation

Simulation

- model: Model

- connect_attempts: Integer

- data: String

- result: Integer

serializing

connecting

initializing

waiting

service_timeout

terminated

connection_timeout

raise out_service::connect

after(1)

[retry()] /

raise out_service::connect

in_service::connected /

raise out_service::simulate(data)

after(10)

[!retry()]in_service::simulation_result(result) /

raise simulation_done(result)

simulations

1 *

Figure 5.31: Automatic activity: protocol implemented to communicate with an external
service.

5.8.3 Evaluation
We implemented this example in the Modelverse [304, 316], our prototype Multi-Paradigm
Modelling tool. Simulations were performed using the PythonPDEVS [308] simulator
as an external service. To transfer the model from the Modelverse to PythonPDEVS, the
model was written out to a file format supported by PythonPDEVS, of which the content
was transferred to PythonPDEVS. After the simulation, the simulated cost was forwarded
back to the service orchestrator.

Thanks to SCCD, we can spawn an arbitrary number of “Simulation” objects, by sending
out an event to the object manager, thereby allowing for dynamic structure (implementing
concurrent). After a simulation is spawned dynamically, for each configuration to evaluate,
we wait for results to come in, encoded in events (implementing reactive behaviour). Each
of the spawned simulations serializes the model, and sends it to the actual external simulator,
after which the simulator is started externally. If no response is received from the simulator
during initialization before a timeout occurs, we retry the connection (implementing timing).
If the simulation was started successfully, but no result comes in before a timeout occurs,
we determine that the simulation has crashed, is stuck in an infinite loop, or ran out of
memory. Independent of the reason, we determine that the simulation result is not the
optimum, and subsequently ignore the simulation run. When all simulation results are in,
or we have waited sufficiently long, we return the optimal parameter that we found.

5.8.4 Related Work
The orchestration of different services is tightly interwoven with process and workflow
modelling, which is an extensively researched domain. Process modelling languages are
primarily geared towards modelling concurrency and synchronisation [286]. Pertinent
examples include languages based on the Business Process Modelling Notation [269], Petri
Nets [284] and UML Activity Diagrams [45]. We focus on and discuss the most relevant
and well-known approaches in terms of the intentions of this paper next.



122 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

The Business Process Modelling Notation (BPMN) [260] is a widely used standard in
process modelling. BPMN is used in a wide range of areas, to model processes in non-IT, as
well as IT-intensive organisations. Its main goal is to provide an understandable notation for
all stakeholders. The focus is more on the conceptual modelling of processes, and less on
orchestration. In version 2.0, the standard has been extended with support for orchestration,
albeit on a non-technical level.

jBPM [73] is an open-source, Java-based framework that supports execution of BPMN
2.0 conform processes. The framework also provides enhanced integration features with
external services in the form of managed Java program snippets. In addition, the process
engine is tightly integrated with a collaboration and management service (Guvnor), a
standardized human-task interface (WS-HT), a rule engine (Drools) and a complex event
processing engine (Drools Fusion).

The Business Process Execution Language (BPEL) [330] is a standardised language for
specifying activities by means of web services. The standard specifies a BPEL process as
XML code, though graphical notations exist, often based on BPMN. Service interaction can
be executable or left abstract. Analysis tools for BPEL have been developed, for example
by formalising BPEL models in terms of Petri Nets as done by [215] and [334]. [167] use
a symbolic analysis model checker. [114] and [111] analyse the communication between
BPEL processes by employing automata. Nevertheless, BPEL is exclusively used for web
services defined using WSDL.

Yet Another Workflow Language (YAWL) [285] attempts to combine the functionality of
BPMN (business-mindedness) and BPEL (executability). In contrast to other approaches,
YAWL was designed with formal semantics in mind, and is defined as a mapping to Petri
Nets. Execution particularly aims to provide insight in data and resources. There is, however,
no particular focus on the integration and orchestration of tools.

Orc [160] is a formal textual language for the orchestration of service invocation in con-
current processes. It aims to manage timeouts, task priorities, and failure of services and
communication. Orc is based on trace semantics, which is used to determine whether two
Orc programs are interchangeable. The integration of tools can be achieved by defining
sites, which represent units of computation. There is no support, however, for modelling
modal behaviour, and the textual notation does not scale to large processes.

Open Services for Life-cycle Collaboration (OSLC) [213] is the de facto standard in tool
integration. It is a specification for the management of software lifecycle models and data,
which are represented as resources. The specification is intended to be used for integration
of services and data, and does not include process modelling.

The Statecharts formalism [133] has first-class notions of concurrency, hierarchy, time
and communication. It can therefore be viewed as a suitable formalism for integration
and orchestration. Because Statecharts is state-based, and does not include fork and join
constructs, it is less suitable for process modelling. Statecharts has been combined with
Class Diagrams in SCCD [298], to provide structural object-oriented language constructs
(i.e., objects with behaviour).

Story diagrams [327] are a formal behavioral specification language with workflow se-
mantics. Similarly to UML Activity Diagrams, they describe control and data flow across
the workflow, but with the added support for specifying executable actions. Just like



5.8. SERVICE ORCHESTRATION 123

the FTG+PM formalism, story diagrams rely on typed attributed graph transformations,
but with a very simplistic type model. As a result, event though story diagrams provide
added behavioral specification semantics, the formalism still is not as versatile as the
FTG+PM.

Biehl et al. [46] proposed Tool Integration Language (TIL): a DSML to describe a service-
oriented tool chain, which could be used for communication, design and automated genera-
tion. Additionally, support for analysis and evoluation of the tool chain is planned.

A summary of all approaches and their suitability for our purpose is presented in Table 5.2.
We have investigated whether the approach is intended to be used to specify processes
(process), whether it aims at integration of services/tools (integration), whether it supports
execution or enactment (executability), whether it provides means for formal analysis
(analyzability), and whether its notation is appropriate for the tasks it is intended for
(usability).

Approach Process Integration Executability Analysability Usability

Petri Nets
Activity Diagrams
BPMN2.0
jBPM
BPEL
YAWL
Orc
OSGi
OSLC
FTG+PM
SCCD
Story diagrams

Table 5.2: Summary of related work. ( - Supports, - Partially supports, - Does not
support)

5.8.5 Link to Requirements

Explicitly modelling service orchestration influences Requirement 2 (Activities), Require-
ment 4 (Multi-User), Requirement 5 (Multi-Service), and Requirement 10 (Portabil-
ity).

Requirement 2 (Activities) is influenced, as activities can now communicate with external
services, while still retaining many of the advantages of being explicitly modelled.

Requirement 4 (Multi-User) is influenced, as multiple users, in the form of manual
activities, can be orchestrated in this way to enhance the multi-user experience. Indeed, if a
user is seen as an external service, it becomes possible to orchestrate not only tools, but
also users performing specific jobs.

Requirement 5 (Multi-Service) is influenced, as this offers an explicitly modelled way
of interacting with existing external services, possibly several simultaneously. The use of
SCCD to model the protocol, and the underlying communication which happens through
XML/HTTPRequests as usual, also does not restrict the set of services that can be con-
nected.



124 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Requirement 10 (Portability) is influenced, as reuse of existing operations, such as those
of existing programs, can be reused this way, without requiring a new implementation. As
we exclusively communicate through sockets, our approach is independent of the program-
ming language in which the service-side wrapper is defined, as well as the implementation
language of the external service.

Summary
In the context of MPM, service orchestration is essential for the combination of multiple
external tools. Nonetheless, current approaches do not sufficiently address the challenges
posed by tool interaction: timed, reactive, and concurrent behaviour. Effectively, the
communication with an external tool is dictated by a protocol, for which we have previously
found SCCD to be the most appropriate. We proposed an approach for handling this
problem by modelling the activity using SCCD (a Statecharts variant), which has native
notions of timing, reactivity, concurrency, and dynamic structure. Thanks to the use of
SCCD, we achieved an intuitive way of interacting with an arbitrary number of external
tools, independent of the implementation language or location of these tools. Additionally,
the use of SCCD allows for analyzability.

5.9 FTG+PM Enactment
Apart from process modelling, which can aid as documentation, the Modelverse should
also support its enactment. The advantages of full support for the FTG+PM have already
been described in the literature [185, 186, 204]. To recapitulate, enactment of the FTG+PM
allows complex processes to be not only useful for documentation, but also for execution.
When a complex workflow is described, together with several languages, it can automatically
be enacted by executing the linked activities in the specified order. Frequently, several
activities are to be executed concurrently, potentially by different users (e.g., one by the
plant engineer and the other by the control engineer). By doing this enactment automatically,
it is ensured that the process is followed, and the modellers are maximally assisted (e.g.,
the correct languages and interfaces are loaded in advance).

5.9.1 Motivation
Process models aim at depicting how the various domain-specific models are used during
development. Models are passed around in the process and are being worked on within
the activities of the process. These activities are either manual or automated, and typically
make use of various services offered by engineering tools. If modelled in an appropriate
formalism, the process can be analysed and subsequently enacted [214]. The enacted
process orchestrates the engineering services, thus enabling a higher level of automation in
the flow of the modelling work in general.

We provide execution semantics for the overall process, expressed as an FTG+PM model,
by mapping the PM part to an SCCD model. This avoids the need to define operational
semantics for activity diagrams, which is non-trivial. A naive implementation merely
dictates an arbitrary order of the concurrent activities, without actually executing them
concurrently. This was originally the case in our prototype tool, since true concurrency is
difficult and relies on many platform characteristics. Some simple examples are the choice



5.9. FTG+PM ENACTMENT 125

between processes or threads, their interleavings, parallelism support of the implementation
platform, and how data is shared between activities. This is only a small selection of crucial
questions regarding the implementation of process enactment. A significant investment
is therefore needed to implement and maintain this infrastructure using traditional (code-
based) techniques.

The process model chains the different activities, dictating the order in which they should be
executed, possibly concurrently, and on which models. Of specific interest is the fork/join
operation, which executes multiple activities concurrently and synchronizes when both
have finished. This is ideal for manual activities, involving multiple developers, who can
now model concurrently.

The lack of native concurrency in many implementation languages causes problems, as
implementing process model enactment requires many workarounds. There are, however,
languages that natively support concurrency, such as SCCD. Nonetheless, none of these
languages was designed to model workflows, and is therefore unsuited for direct modelling.
In summary, we want users to model using activity diagrams as usual, but we transform the
modelled process to an SCCD model for execution purposes. This transformation defines
denotational semantics for process models, instead of operational semantics (an executor).
While other similar languages exist, we favour SCCD, as this allows us to reuse the existing
SCCD execution engine and this provides some future opportunities (see next section).
Additionally, by mapping to SCCD, there is only one implementation of an executor for
timed, reactive, autonomous, dynamic-structure behaviour that must be maintained (the
SCCD executor).

5.9.2 Model
We map these activity diagrams to SCCD through the use of explicit transformation models.
In our case, the LHS contains activity diagrams elements, such as the activity construct,
and the RHS copies the activity diagram construct (leaving the activity diagram intact)
and creates an equivalent SCCD construct (i.e., an orthogonal component). Defining this
model transformation is significantly less work than defining operational semantics from
scratch.

A basic mapping to SCCD consists of mapping forked activities to orthogonal components,
that each spawn and manage the execution of the activities; joins synchronize the execution
by transitioning from the end states of these components. While intuitive, this mapping
can run into problems, as an analysis of all concurrent regions would be necessary. For
example, consider two parallel forks that interleave, as shown in Figure 5.32. In that case,
D and C are spawned simultaneously, and should therefore be part of the same orthogonal
component. However, this orthogonal component synchronizes on C and E, where E was
spawned by a different orthogonal component. Using the basic mapping, the two forks
cannot be independently mapped, as their interaction would need to be analysed, resulting in
a different mapping to orthogonal regions. Therefore, we propose a more generic mapping,
described next.

Our equivalent SCCD model consists of a set of orthogonal components, one for each
activity diagrams construct. The order in which the orthogonal components are enabled, is
defined by the condition that is present in the orthogonal component itself. Each orthogonal
component will check whether it has the “execution token”, and if so, it passes on the



126 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

A B

C E F

G H

D

Figure 5.32: Problematic process model with a naive mapping to SCCD constructs.

token. All orthogonal components are executed concurrently, meaning that if suddenly
multiple tokens exist, due to a fork, multiple orthogonal components can start their operation
concurrently. Depending on the type of construct, the behaviour changes: activities execute
and pass on the token upon completion, a fork splits the token, a join merges tokens, and
a decision passes the token conditionally. We describe our transformation rules for each
activity diagram construct in detail.

Transformation Rules

The following transformation rules are executed in the presented order. Before we actually
start the translation, however, we first perform a minor optimization step: subsequent
fork operations are merged into a single fork. This is not performed for performance
considerations, but makes the mapping slightly easier. When a fork succeeds another fork,
this is equivalent to the first fork also forking to the targets of the second fork, thereby
bypassing the second fork. This optimization thereby removes two chained forks, allowing
us to skip this case in the remainder of the mapping. While this pattern does not occur
frequently, it must be taken care of, as it is a valid construct. The same optimization is
performed for join nodes.

Combined with the previous section, in which we explicitly modelled activities using
SCCD, it is possible to make the assumption that all activities have an SCCD representation.
This is used to spawn new instances of the activity.

Optimization Figure 5.33 presents the optimization of fork nodes, as discussed previ-
ously. The first (topmost) rule makes sure that the first fork directly links to all targets of the
second fork, removing the target from the second fork. This rule keeps the model semanti-
cally equivalent, as the second fork now has no successors. In the second (bottommost)
rule, an empty fork node is removed, as it has no outgoing edges any more. This rule again
maintains semantic equivalence, as the second fork has no successors left. Similar rules
exist for the optimization of fork nodes.



5.9. FTG+PM ENACTMENT 127

1
:Fork

2

4

:Fork
3

:ProcessNode

5

1

:Fork

2

4

:Fork
3

:ProcessNode

6

1

:Fork
2

3
1

:Fork
:ProcessNode

Figure 5.33: Optimize rules.

Orchestrator

initializing

waiting

creating
done

running

orchestration

1

2

3

4
5

6

7

8

9

10

11

12 1314

15

Figure 5.34: Orchestrator rule.

waiting

running

1

:Activity

running

:ProcessNode

2
3

4

running

1

:Activity :ProcessNode

2
3

4

5

6

7
8

9
10

12

11

Figure 5.35: Activity rule.

1

:Fork

waiting
running

2

running

2

3

4
5

681

7

:Fork

Figure 5.36: Fork rule.

Orchestrator Figure 5.34 presents the transformation rule for the orchestrator, which
executes once. Each subsequent transformation rule extends a single composite state with
an orthogonal region. The orthogonal regions execute all elements of the activity diagram
in parallel, waiting for a condition to become true. The first step consists of creating the
composite state and providing it with an orthogonal region that catches a spawn event, and
performs the spawning of an activity. By defining this code here, it does not have to be
reproduced throughout the other orthogonal regions, and maximising reuse.

Activity Figure 5.35 presents the transformation rule that executes for each activity.
Activities are relatively easy to map, as they merely require the spawning of their associated
activity (which, in our case, is modelled by another SCCD class). This is achieved by
sending a spawn event to the orchestrator, and transitioning to a “running” state. We stay in
this state until we have determined that the spawned activity has terminated, after which we
mark the current activity as executed (i.e., we pass on the token).

waiting

1
:Join

2

running

5

6
7

8

9

:ProcessNode

3

4

4

running

1
:Join

:ProcessNode

3

2

Figure 5.37: Join rule.

waiting

1

:Decision

running

2

running

2

3

4
5

681

:Decision

7

Figure 5.38: Decision rule.



128 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Fork Figure 5.36 presents the transformation rule that executes for each fork node.
Forking requires a single token to be distributed among all of its successors, without doing
any computation itself. As such, our transformation rule adds an orthogonal component
which continuously polls whether or not it has received the token. If it receives the token, it
immediately passes the token to all of it successors simultaneously.

Join Figure 5.37 presents the transformation rule that executes for each join node. Joining
is slightly more complex: it has to check for multiple tokens, before becoming enabled.
When enabled, it consumes all of these tokens and passes on the token to its own successor,
of which there is only one.

Decision Figure 5.38 presents the transformation rule that executes for each decision
node. The final construct that we have to map, is the decision node. Similar to all previous
nodes, we check whether we have a token to start execution. Depending on the input data
that we receive, we decide to pass on the token to either the true- or the false-branch.

5.9.3 Evaluation
To evaluate our approach, we consider an FTG+PM for a simplified version of the power
window, shown in Figure 5.39. This includes most aspects of the FTG+PM, such as
concurrency (the 5-way fork in the beginning), decisions (is an error state reachable or
not), and various types of activities (manual, transformations, action language, and external
services).

Mapping this model using the previously presented transformation rules is simple, and
results in the model shown in Figure 5.40. From the previous discussion, it became clear
that this model does not look similar to the original FTG+PM model, as there might
then be problems related to the concurrency. This SCCD model can now be executed
directly, yielding identical execution results as if an operational semantics was implemented
directly.

In future work, we plan to consider the benefits of combining service orchestration (activities
modelled with SCCD) and the denotational semantics for process model enactment using
SCCD. Indeed, as both the process and activities are modelled in SCCD, they can be
combined into a single SCCD model. This single SCCD model can subsequently be
analysed [217] or debugged [205], without any additional work. To achieve the valid
and sound construction of this combined SCCD interaction/process model, composition
rules of the single interaction SCCD model need to be investigated. Existing work on
process-oriented inconsistency management in MPM settings [75] is a prime candidate to
be augmented with such an approach. Software Process Improvement (SPI) techniques in
general can greatly benefit from our approach as well.

5.9.4 Related Work
Most parts of related work are already touched upon in the previous section on service
orchestration, as both topics are tightly interwoven. Most of these techniques rely on
providing operational semantics to the used process modelling language. In our case,



5.9. FTG+PM ENACTMENT 129

FTG PM

req
:Requirements

plant
:Plant

:Marked
PetriNets

env
:Environment

query
:SafetyQuery

:Encapsulated
PetriNets

ctrl
:Control

:Reachability
Graph

:Encapsulated
PetriNets

Requirements

Plant

Environment

Control

Safety
Query

Encapsulated
Marked
PetriNets

Marked
PetriNets

Reachability
Graph

revise
plant

revise
env

revise
ctrl

revise
query

make
initial

combine

mark

analyse

plant
toPN

env
toPN

ctrl
toPN

revise
req

Architecture revise
arch

:Encapsulated
PetriNets

arch
:Architecture

True

False

revise
req

revise
plant

revise
env

revise
ctrl

env
toPN

ctrl
toPN

combine

revise
query

analyse

mark

make
initial

plant
toPN

revise
arch

bfs_print

bfs_print

Figure 5.39: Power window FTG+PM.

Orchestrator

initializing

done

running

waiting

creating

orchestration

waiting

running

Model
Collector

waiting

running

Generate
Parameters

waiting

running

Combine
Models

waiting

running

Optimize
Model

waiting

running

Model
Generator

Join1

waiting

waiting

running

Model
Segment

Fork1

waiting

simulations
Model Generator

... 1

...

*

...

Optimize Model

- model: Model

- configs: List

- results: SimulationResult

Simulation

- model: Model

- connect_attempts: Integer

- data: String

- result: Integer

Figure 5.40: Power window FTG+PM from Figure 5.39 mapped to SCCD.



130 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

activity diagrams were used to define the process model. As this is a relatively popular
language [229], several different forms of semantics are defined for this. In particular, the
soundness and safeness of an activity diagram can be determined by mapping it to Petri
Nets [287]. Both properties are then translated to the Petri Nets domain.

5.9.5 Link to Requirements

Support for the modelling and enactment of FTG+PM models influences Requirement 3
(Process Modelling), Requirement 4 (Multi-User), Requirement 9 (Megamodelling),
and Requirement 10 (Portability).

Requirement 3 (Process Modelling) is influenced, as the presented approach offers en-
actment support for the FTG+PM. By modelling the semantics using model transfor-
mations, the semantics is also clearly defined, without relying on the implementation
platform.

Requirement 4 (Multi-User) is influenced, as the PM is a structured way of supporting
the interaction with multiple concurrent users, working on the same process.

Requirement 9 (Megamodelling) is influenced, as the FTG+PM model is effectively a
megamodel: all data, activities, and formalisms are explicit models in the Modelverse
as well. By offering enactment support, we show that megamodels can be fully sup-
ported.

Requirement 10 (Portability) is influenced, at the PM enactment can be seen as a platform-
independent process execution language. As the enactment does not rely on details of the
implementation platform, which are handled by SCCD, portability is achieved.

Summary

In the context of MPM, service orchestration and process model enactment is essential
for the combination of multiple external tools. We propose an approach for handling
the problems associated with implementing support for process model enactment: the
importance of timing, reactivity, concurrency, and a potentially dynamic structure (due to
multiple concurrent invocations) make it hard to code this behaviour. The process model is
transformed into an equivalent SCCD model for execution, which has native constructs
for timing, reactivity, concurrency, and dynamic structure. This preserves the modelling
abstractions provided by activity diagrams, while gaining the execution of SCCD. In future
work, the use of SCCD for both the activities and the process can allow for analyzability,
as activities are no longer black box operations.

5.10 Action Language
Model transformations are often touted as the heart and soul of MDE [257], as it enables
domain experts to define semantics themselves. And while often the case, some activities
are not suited for a declarative formalism, making model transformations inappropriate.
For example, constructing a reachability graph is intuitively simple with operational code,
but is complex with model transformations, although possible. Many model management



5.10. ACTION LANGUAGE 131

operations are similar, and therefore profit from a procedural implementation. This proce-
dural language forms the basis for the core library of model management operations, and
can also be used to model activities.

5.10.1 Motivation
As procedural code is sometimes the most appropriate formalism, there is a motivated need.
Indeed, MPM mandates to use the most appropriate formalism, which can be code. In this
thesis, a new procedural language is created of which the semantics is explicitly modelled
using graph transformations.

Why a new action language?

We have opted not to reuse existing general-purpose (programming) languages. While a
plethora of such languages exist, some specifically tailored to a meta-modelling context,
they rarely have a fully explicitly modelled syntax and semantics. Our new language offers
several benefits that would otherwise have been difficult to achieve.

Existing general purpose languages, such as Python and Java, are huge: they have many
syntactical constructs and their semantics is often not fully defined. For example, the
semantics of Python is only defined through documentation and a reference implementation.
Some standardized languages have a description of the semantics, but this description is
not executable or complete (i.e., undefined behaviour). It is therefore difficult to explicitly
model the language (e.g., for use in activities) and do meaningful operations (e.g., optimize
code). The amount of features that these languages offer is also too generic for what
we need it for: concepts such as generators are nice to have, but also complicate the
design. Similarly, the extensive libraries that are offered in these languages should also
be completely described in the language proper, or be formally defined. More restricted
languages, such as OCL and EOL, are already better in this regard, but their syntax and
semantics is even less formalized. Additionally, most aforementioned languages have
only one interpreter, for example implemented in Java, restricting the implementation
platform.

So while existing languages were considered, integrating them with the remainder of the
application is troublesome without endangering our requirements. For these reasons, we
have created a (minimal) new formalism for the definition of Action Code. This raises the
question as to why we model the action language in the first place.

Why model the action language?

At the moment, most tools don’t explicitly model their action language. Whenever a
procedural language is required (e.g., as the action of a Statechart transition), this attribute
is merely considered as a string. This string is then simply copied when generating code
from the model, or is directly executed (e.g., using an exec statement) when the model is
executed. Considering this situation, it is desirable to have an explicitly modelled action
language for several reasons.

First, portability is a recurring requirement: it is difficult, if not impossible, to automatically
translate existing languages (e.g., Python) to another language (e.g., Java). For example,
when generating code from an SCCD model, the action on a transition should also be



132 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

mapped to the target language of the mapping. When languages like Python are used in
the attribute, the target platform must also use Python or at least be able to integrate it.
This means that code generation to platforms such as JavaScript become impossible. By
modelling a minimal, neutral action language, which can be mapped to both Python and
JavaScript, this problem could be circumvented. Second, if the action language and its
semantics are explicitly modelled, debugging becomes easier [293]. All execution state is
stored in models as well, and is therefore easily accessible for inspection and modification,
while enforcing well-formedness. In the limit, activities can be defined to operate on action
code and its execution state. Third, by modelling syntax explicitly, we can check whether a
piece of code is correct before it is effectively executed. Furthermore, it can be enforced
that some piece of code is to be a condition or is of a certain sub-expression type.

Why model the action language using graph transformations?

Modelling the action language requires three things: abstract syntax, concrete syntax, and
semantics. We focus mostly on the semantics, as the (concrete and abstract) syntax is
already done by most languages anyway (e.g., using a grammar), and we apply a similar
approach. Given the graph-like structure of the action language abstract syntax, it is only
logical to use graph transformations to define operations on this graph.

Using graph transformations offers several advantages. First, the graph transformation
rules can serve as a visual piece of documentation, explaining the semantics of the action
language. Second, graph transformations have a clearly defined (often formal) semantics
that is relatively intuitive: nodes and edges are matched and then replaced. Third, our
transformation rules can easily be used for code synthesis, searching for a pattern and
rewriting it. Fourth, graph transformations are models themselves, and therefore action
language semantics is again a model, with the usual advantages (mainly uniformity). Fifth,
graph transformations are independent of the underlying implementation language, as there
are no blocks of action code attached to the transformation rules.

For the visualization of the rules, we use a combined notation: a single subgraph is shown
which has four colours. Black and blue elements are matched: these elements have to be
present for the rule to become applicable. Red elements are negative application conditions:
if these elements can be matched, the rule cannot be applied, even if all other applicable
elements were found. Green elements are newly created after the matching phase was
done. Blue elements are removed after they are matched. These colors therefore resemble
the basics of CRUD operations: Create (green), Read (black and red), and Delete (blue).
Updates are not supported, as none of the atomic elements can be updated.

5.10.2 Model
Modelling the Action Language requires to define its syntax and semantics. The syntax is
used to create action code, while the semantics is used to execute it.

Syntax

As usual, the syntax of modelling languages is composed of both the abstract syntax
(defining the structure and allowed constructs) and the concrete syntax (defining its visual-
ization).



5.10. ACTION LANGUAGE 133

NextStatement

Element

Parameter

Break

Continue

Return

Statement

Expression

Access

Call

Assign

Resolve

Global

Output

Declare

If

While

node

name

value

[next]

while

while

[value]

body

cond

var

value

var

var

value

var

then

[else]

cond

[params]

[last_param]

body

[next]

FuncDef

Const

Input

ParamDict

params

Figure 5.41: Abstract syntax of the Action Language. Associations whose name are within
square brackets indicate optional associations. All associations have a maximum cardinality
of 1.

Abstract Syntax The abstract syntax of the Action Language is shown in Figure 5.41,
showing the atomic operations, such as Declare and Assign. For each of these constructs,
additional constraints are defined, such as the maximum number of outgoing associations
of a specific type. In our case, optional links are marked with square brackets (e.g., [value]),
while all other associations are mandatory with exactly 1 instance. For example, it is shown
that an If construct has exactly one association representing the condition, going towards
an expression. As such, an If instance without condition expression is disallowed, and it is
also disallowed for the condition to be a generic statement (e.g., a While construct). An If
instance can, however, have an optional else block, but at most one. Due to its inheritance
from NextStatement, there is also an optional next link to another operation. None of the
elements have additional attributes defined on them.

This language is intentionally left as minimal as possible. For example, there is no For
construct, as it can be emulated using a While loop. Nonetheless, it is of course possible to
introduce such concepts, as long as a translation is defined which generates an equivalent
model without the use of For constructs. Due to everything being modelled explicitly,
this can be done using model transformations. Indeed, any possible language can be
created, which only has to write out models using the Action Language abstract syntax,
making it executable. This minimality makes it easier to provide support for the language
(e.g., interpreter, debugger, JIT compiler) and forces more advanced concepts (e.g., list
operations) to be modelled in the action code itself.

An example abstract syntax model implementing the Fibonacci algorithm is shown in
Figure 5.42. This figure encodes the algorithm described in pseudocode in Algorithm 5.



134 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

integer_subtraction

integer_addition

integer_gt

fib

1

1

1 2

a

ba

b

a

b

a

b

n n

ACCESS

RESOLVE

var

ACCESS

RESOLVE

var

ACCESS

RESOLVE

var

ACCESS

RESOLVE

var

ACCESS

RESOLVE

var

ACCESS

RESOLVE

var

IF

CALL

cond

RETURN

else

RETURN

then

func params

last_paramCALL

funcparams

last_param

CALL

funcparams last_param

CALL

funcparams

last_param

CALL

func params last_param

CALL

func params

last_param

var

RESOLVE

var

var

var

var

RESOLVE

var

var

var

RESOLVE

var

ACCESS

var

ACCESS

var

ACCESS

var

CONST

valuevalue

CONST

node

node

CONST

node

CONST

node

namevalue next_param

namevaluename

value

next_param

namevalue

namevalue

name valuenext_param

name value

name value

namevaluenext_param

namevalue

Figure 5.42: Abstract syntax of a Fibonacci algorithm written in the Action Language.

As all constraints imposed by the abstract syntax are valid, this model is a valid piece of
Action Code.

ALGORITHM 5: Fibonacci algorithm implemented in Figure 5.42.
if n > 1 then

return fib(n− 1) + fib(n− 2)
else

return 1
end if

Concrete Syntax The concrete syntax of most programming languages is defined in the
form of a grammar. This grammar is then used by a compiler compiler, which creates
a parser for that specific language. The grammar used by our compiler compiler for the
Action Language concrete syntax can be found in the source code.



5.10. ACTION LANGUAGE 135

For example, the concrete syntax of Algorithm 5 is shown in Listing 5.7. The meaning
of the code is easy to understand, as the language bears similarities to existing procedural
languages.

1 Integer function fib(n : Integer):
2 if (n > 1):
3 return 1!
4 else:
5 return (fib(n - 1) + fib(n - 2))!

Listing 5.7: Action Code for the Fibonacci algorithm shown in Algorithm 5

Interestingly, the Action Language has several additional primitives that are not usually
found in a procedural language: each action language construct is itself a primitive in the
Modelverse (prefixed with a “!”). For example, the construct !If can be used as a literal,
indicating an instance of the If abstract syntax class. Action Language constructs are
considered as primitives, as they are processed at the lowest level of the Modelverse, at a
level where modelling is not yet defined. Using these constructs, it is possible to dynamically
create or update action language without the use of modelling constructs.

The parser used is an external piece of software: we did not want to create a parser from
scratch in the Modelverse, as that is out of scope for this thesis. Nonetheless, this parser
is integrated in the Modelverse through the use of services (Section 5.8). This parser
is unaware of the Modelverse internals and therefore does not send back action code
directly, but commands. These commands are simple instructions to the Modelverse on
which elements to create, and how to create them. Even if the internal details of the
Action Language would change, the compiler can be left untouched. For example, an If
construct is expanded by the compiler to a list of commands, in which the first one is the
string “if”, the second one represents the condition and is recursively processed, and so on.
The Modelverse then processes this command to construct the necessary abstract syntax
model.

Semantics
With the structure defined, the next step is execution. We rely on graph transformations
operating over the primitive representation of this model: as a graph. This is required due
to the Action Language semantics residing at the lowest level of the Modelverse, where
there are no concepts of models and metamodels yet. It is therefore inefficient to rely on
the modelling infrastructure: they reside at different levels in the Modelverse.

Semantics is instead defined operationaly. This operational semantics creates additional
structures in the Modelverse, representing the execution frame. An execution frame includes
an instruction pointer (to the model in the Modelverse), a symbol table (containing values
for variables), a stack, and so on. By creating such an execution frame for each executing
task, all information related to execution is explicitly present in the Modelverse. This
explicit execution frame is used in the graph transformation rules, as some rules depend on
the value of variables (e.g., If construct) and the state of the instruction pointer.

All graph transformation rules are shown and explained in Appendix B. Only a single rule
is explained here in-depth, to give a basic understanding of the operation of the Modelverse.
This rule is the execution of an If construct to go to the else branch and is shown in
Figure 5.43. We consider three phases in the application of the graph transformation rule:
matching, negative matching, and rewriting.



136 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

taskname

’frame’

’cond’

’phase’

!if

’IP’

’evalstack’

False

’returnvalue’

’init’

’phase’

’IP’

’evalstack’

’else’

’prev’

’inst’

’finish’

’phase’

Figure 5.43: Graph transformation rule for the If construct to switch to the else block.

Matching First we look at the part that will be matched: the black and blue parts. These
parts start from the Modelverse root (topmost node), from which we follow an edge
dedicated to the specific task we are currently executing. The taskname is a parameter
to the application of each rule and is set by the task manager (Section 5.11). For that
task, the execution frame is read out, containing the instruction pointer (to If ), the phase
the instruction is currently in (cond, for condition), the return value of the last operation
(False), and the current execution stack. The instruction pointer and phase are combined to
determine when the rule is applicable. Only having an instruction pointer to the If is not
sufficient, as we came back to this construct: the condition was already evaluated. This
information is stored in the execution phase. A match is made if the return value is false, as
the else branch is only executed if the condition evaluated to False. The evaluation stack is
matched for later use, and is always present. Additionally, the matched If construct needs
to have an outgoing else edge, as otherwise there is no else block. Not having an else
block is fine, but then a different graph transformation rule is applicable: one setting the
instruction pointer to right after the if block. If this rule is matched, we therefore know that
the condition of an If statement (instruction pointer) has been evaluated (phase) to False
(return value), and that the If construct has an else branch.

Negative Matching Now we determine whether or not the rule is still applicable given
certain negative matches: the red parts. No negative match is given in this case, and
therefore this phase is skipped. Another If rule exists which contains a negative matching
part: the one executing this same instruction for when there is no else branch. In that
case, the check must be made explicit, as otherwise multiple rules could be applicable
simultaneously.



5.10. ACTION LANGUAGE 137

Rewriting Finally, we perform the rewriting if the matching was successful and the
negative matching did not withold the application. Rewriting considers the blue (deleting)
and green (creation) parts. First, all green elements are created. In our example, this creates
a new instruction pointer to the target of the else link, and resets the phase to init, being the
first phase of every instruction. Additionally, the execution stack is updated by pushing the
If construct, with a phase of finish. This is required, as after the else branch has finished
execution, execution falls back to the If construct, which then enters its final phase. After
the final phase, control is passed on to the next instruction (not shown): either the one
right after the If block or the enclosing operation (e.g., another If or function call). After
creation, the blue elements are removed. These are the links for which an updated value has
been stored in the stack (e.g., the phase). Therefore, the old phase and instruction pointer
are removed, and the pointer to the execution stack is shifted to include the newly added
element as well.

5.10.3 Evaluation

With the syntax and semantics of the Action Language defined, it remains to see whether it
fulfills the goals we originally set out for in the motivation.

First, we turn back to the abstract syntax graph representation, as for example shown
previously in Figure 5.42. Here, we see how easy it would be to perform optimizations
on the abstract syntax graph through model transformations, as indeed the code is nothing
more than a graph-based model. An example is constant folding for addition, shown in
Figure 5.44. In this transformation rule, we search for a pattern that calls the integer addition
function on two constants, and replace this invocation with a constant. More involved
optimizations are possible as well, for example if the source language is less verbose than
the action language. For example, if the source language is identical to the action language,
but includes a For construct, it is possible to automatically do this expansion using model
transformations. That way we achieve the desired functionality of the source language,
while maintaining the minimality of the Action Language and keeping the semantics of
the language explicitly modelled. This kind of optimization is now often done in the
compiler itself, for example through peephole optimization. The primary advantage of
our approach is that the rule is easy to document and is intuitively clear, making it easier
to maintain. Additionally, our approach works directly at the graph-level, making even
complex optimizations, spanning huge portions of code, possible.

Second, it is possible to automatically generate documentation out of the rules, thereby
providing a specification of the Action Language that is guaranteed to be up to date. In our
case, we defined a model transformation which writes out the different matching rules to
the format presented before (e.g., Figure 5.43). The output of this transformation is shown
in the Modelverse technical report, where all graph transformation rules are shown and
explained in detail. One such rule was shown in Figure 5.43 as an example.

Third, it is possible to automatically generate code from these transformation rules, thus
providing an interpreter that is guaranteed to follow the specifications. We have defined
this as a model-to-text transformation, which finds a match set of nodes, and based on that
match, rewriting happens. Using this approach, it is possible to quickly port the interpreter
to another platform, as most code is automatically generated. In the end, the automatically
generated MvK consists of about 1250 lines of code, of which less than 100 had to be



138 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.44: Example optimization rule for the Action Language: constant folding.

manually written. These manually written lines are the necessary preamble (imports, utility
functions) and some minimal wrapping. Apart from the rules, primitive functions also have
to be ported to the target language, though these are trivial to implement. For example, the
integer addition function maps to the + operator in Python. The Action Language
interpreter can thus be ported to another language without much effort: the vast majority of
code is automatically generated, and the remaining code is an intuitive mapping of primitive
operations to the operations in the platform.

5.10.4 Link to Requirements

Explicitly modelling the syntax and semantics of the action language has an influence
on Requirement 2 (Activities), Requirement 5 (Multi-Service), and Requirement 10
(Portability).

Requirement 2 (Activities) is influenced, as activities can be implemented in whatever
formalism is most appropriate for the job. In our case, the addition of an explicitly modelled
action language allows activities to be defined in an operational action language as well.
Apart from this, (declarative) model transformations are also possible.

Requirement 5 (Multi-Service) is influenced, as the Action Language compiler is imple-
mented externally as a service. This immediately highlights that the Modelverse can make
use of an external service, if the tool is too difficult to create from scratch in the Modelverse.
Indeed, a parser is non-trivial to re-implement, making it more efficient to reuse an existing
implementation.

Requirement 10 (Portability) is again influenced, as the semantics of the action language
is modelled explicitly. Exactly the same action language semantics can therefore by
synthesized for different platforms, from the same specification.



5.11. TASK MANAGEMENT 139

Summary
A new procedural language was created to serve as the Action Language in the Modelverse,
with minimality and formal semantics as its primary goal. Both its syntax and semantics
were explicitly modelled. For syntax, we presented the abstract syntax model and briefly
mentioned how the concrete syntax was defined using a grammar. The explicitly modelled
syntax allowed for more constraint type checking on action code fragments, which do not
have to be persisted as text anymore. For semantics, we can automatically generate an
interpreter for the language, including documentation, while offering access to all details of
execution to debugging operations, such as the execution frame.

5.11 Task Management
As the Modelverse supports multiple users, each multiple concurrent connections to the
Modelverse, some type of resource sharing becomes necessary for these tasks. We consider
three types of resources: time, space, and access to memory.

For time, the operations of the various tasks have to be interleaved in the MvK, which does
the computation. This is highly similar to process scheduling in operating systems. Other
similarities can be found as well, such as managing files (models), users, processes (tasks),
and memory management (MvS). For these reasons, we consider that the Modelverse
implements the basics of a “modelling operating system”.

For space, the models manipulated by the Modelverse have to be stored somewhere. We
assume that the Modelverse will never run out of memory, as storage builds on top of a
generic database system, for which advanced techniques exist that are out of scope of this
thesis. Nonetheless, it is possible to impose a quota for the different users, thereby limiting
the size of individual models, and limiting the number of models that the user can create.
Such quota prevent a single user from using disproportionally more memory. Using the
previously defined FTG, it is easy to store this data and enforce it, although this is done
outside of the task manager.

For memory accesses, this is similar to time sharing, but at the MvS level, instead of the
MvK level. Similar resource sharing is required at that level.

5.11.1 Motivation
Task management is therefore required in the Modelverse to implement resource sharing.
For the Modelverse, we explicitly modelled task management using SCCD. As the primary
advantages are related to development time and portability, this aspect is only briefly
presented.

Why model task management?

As was the case for the GUI, the protocol wrapper, and the network protocols, the task
manager interacts with many concurrent requests. Indeed, each of the connected tasks can
send new input, receive new output, or perform computations at any point in time. Managing
this complex stream of concurrent events is non-trivial with current programming languages.
Ideally, resource management is identical among various implementations, meaning that all
tools should implement the same policies.



140 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Figure 5.45: Task manager SCCD model (abstracted).

Why model task management with SCCD?

The high similarity with the GUI, protocol wrapper, and network protocol already suggests
that SCCD might be appropriate to model the behaviour. And indeed, task management has
the same sources of complexity, being the timed (e.g., timeouts of a client or a connection),
reactive (e.g., new input or output), and concurrent (i.e., the various tasks running at the
same time) behaviour. In this case, the dynamic structure of SCCD also comes in handy,
as the various tasks all have their own statechart, which can be spawned or destroyed at
runtime. Thanks to the code synthesis capabilities of SCCD, the model can again be used
to generate code for several platforms.

5.11.2 Model

Figure 5.45 shows the SCCD model used to model the task manager. This is an abstracted
view, which ignores actions and simplifies some conditions to keep the model readable.
The full model can be accessed from within the Modelverse source code.

The SCCD model consists of three classes: Controller, Service, and Task. The Controller is
the initial class, of which an instance is spawned in the beginning of execution. There are
several concerns of the controller, but most importantly it should coordinate the different
tasks and process input and output. Unused sockets are also pruned by the controller. Every
so often, the controller queries the Modelverse for a list of active tasks. Tasks that were
not yet known to the controller are spawned (spawns Task object), and tasks no longer
present in the Modelverse are removed (remove Task object). Potentially, a task can also
be a service, which is mostly the same, except that a Service has no attached computation.



5.11. TASK MANAGEMENT 141

From time to time, the controller suspends all tasks and issues garbage collection on the
Modelverse State, thereby removing unconnected nodes.

The Task class combines computation with data processing and timing issues. First, the
Task has a built-in timing structure: if the Action Language requests a timeout, this timeout
is actually delegated to the SCCD model, where the pause happens. Second, the Task has
a queue which processes all incoming and outgoing data until it can be processed by the
computation. Third, the actual computation of the Task is left. Here, the task processes
input events if there are some in the input buffer, and it checks for new output values every
0.1 seconds. Actual computation is done in the bottommost orthogonal component, where
the computation can be blocked (due to a timeout), failed (due to an error), or processing.
When the pause event is received, computation is paused and no operations happen, as the
MvS is performing garbage collection. When the resume event is received, computation is
resumed by using a history state.

The Service class is much more simple, as it merely processes input and output events.
Services are similar to tasks, but have no attached computation: they are only used to store
and forward data.

For each task and service running in the Modelverse, the respective class is instantiated.
Thanks to the semantics of SCCD, each of these objects has an associated statechart, all of
which run concurrently.

5.11.3 Evaluation
We now briefly evaluate the SCCD model created for the task manager. No detailed
evaluation is given for this topic, as this does not present a significant contribution apart
from development time and portability.

The task manager is highly similar to the other models we made using SCCD: all have to
react to a stream of events. In the case of the task manager, we benefit from the use of
SCCD by relying on its native constructs. For example, when a sleep operation is requested
by the task, this is mapped to an after in the SCCD model of that task. This makes use of
the most appropriate sleep operation for the current platform.

We make extensive use of the dynamic structure capabilities of SCCD, as we spawn several
services and tasks dynamically. When a new task is detected in the Modelverse, the new
task is managed by the MvK. We ensure that the Modelverse remains in charge (i.e., the
Modelverse manages the active tasks). While executing a task, all tasks can concurrently
process input and output, without bothering one another. This would otherwise only be
possible through the use of threads.

5.11.4 Link to Requirements
Explicitly modelling task management has an influence on Requirement 4 (Multi-User),
Requirement 5 (Multi-Service), and Requirement 10 (Portability).

Requirement 4 (Multi-User) is influenced, as this task management model encodes how
the interleaving between different users happens, to enforce (computational) resource
sharing. The time sharing of different users becomes more intuitive to model through the
use of timeouts and concurrent states.



142 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Requirement 5 (Multi-Service) is influenced, as services also make use of the task man-
ager, being similar to tasks. For each service, a service object is spawned in the MvK which
forwards input and output events.

Requirement 10 (Portability) is influenced, as the model is again platform-independent.
Specifically, the extensive use of concurrency and timing became much more portable by
using these native constructs.

Summary
Task management is required to handle the resource sharing for the different tasks executing
on the Modelverse. Resources include computation time, memory use, and memory access.
We have primarily focussed on computation time, for which the resource sharing was
explicitly modelled using SCCD. Thanks to this SCCD model, most of the accidental
complexity of the timed, reactive, and concurrent behaviour was mitigated, while also
automatically generating code for several platforms.

5.12 Performance
While performance is a non-functional aspect of an MPM tool, it remains an important
consideration. Even more so, as the Modelverse serves many concurrent tasks simultane-
ously, using a client-server architecture over a (potentially high-latency) network. All in
all, it is important to at least consider and evaluate the performance users can expect of our
tool. Using a performance model, not only can we evaluate performance, but we can also
perform what-if analysis and have efficient, repeatable benchmarks.

5.12.1 Motivation
A tool for MPM, such as the Modelverse, has to support a wide variety of features: inter-
action with multiple existing tools, multiple types of interface, multiple concurrent users,
and so on. These high-level requirements result in several lower-level requirements. For
example, the system must be distributed (to handle the “service” nature), must support con-
currency (multiple users, each with their own domain of expertise), and performance must
be monitored and optimized (to handle complex models). These low-level requirements are
becoming more and more frequent in many types of software systems built today, although
we will focus on these problems in the context of the Modelverse.

We will tackle the problems related to performance assessment and evaluation. As the
Modelverse is concerned with performance, representative benchmarks are necessary. How-
ever, such benchmarks have limitations: they are executed on a shared-resource machine,
meaning that performance results depend on the interleaving with other applications. For
example, benchmarks executed while the anti-virus program is running or the system is
being updated, result in incorrect performance results. Additionally, benchmark results
strongly dependend on the hardware platform, such as CPU and main memory, but also
the used network and all intermediate network components (e.g., switches). For exam-
ple, benchmarks might be adversely affected if communication happens over a congested
network, over a wireless network, or if the CPU is doing automatic frequency scaling.
Benchmarks therefore have limited predictive power and repeatability: results are only
valid for the machine on which they run, and in those exact circumstances.



5.12. PERFORMANCE 143

These problems are caused by the non-determinism and non-configurability of the under-
lying platform. Performance evaluations are affected by the hardware used, as operations
take different times to execute. The source of the problems therefore lies with timing.
To address it, we do away with the current notion of time, shifting to a time over which
we have full control: simulated time [124]. To use simulated time, we must make use of
simulation, instead of executing the actual program. Therefore, we propose to explicitly
model a Parallel DEVS [65, 338] model of the tool in question, effectively splitting the
notions of wall clock time and simulated time.

5.12.2 Background: DEVS Modelling and Simulation
As was shown, DEVS modelling and simulation indeed has some advantages in this case.
We now briefly elaborate on why we have used PythonPDEVS instead of other tools.
PythonPDEVS is mostly interesting due to its balance between supported features [310,
313], compliance to the DEVS formalism [179, 313], and performance [308, 309, 313].
Additionally, the use of Python as the grafted language means that existing Modelverse
functions could easily be integrated.

Other Tools

We present several other DEVS simulators, and mention how PythonPDEVS relates to them.
Included tools were selected based on their popularity, (attributed) performance, or extensive
set of features. We first give a high-level introduction of the tool and mention how it can be
used, after which we discuss its features, compliance to DEVS, and performance.

Adevs Adevs [210] is a lightweight C++ library, offering DEVS simulation. Both atomic
and coupled models are written in C++ code, which must include the Adevs headers. Due to
the extensive use of templates, the headers contain all required source code. The simulation
kernel and model are compiled into a single executable, and must therefore be recompiled
after every model edit.

CD++ CD++ [328] is a DEVS simulator written in C++. Simulation of Cell DEVS
models is its main feature, though normal DEVS models can be simulated too. DEVS
models can also be coupled to Cell DEVS models. Atomic models are written in C++ and
are linked into the simulation tool. Coupled models are written in a custom syntax, which
is interpreted at simulation-time. Changes to atomic models require recompilation and
linking to the simulation tool. Changes to coupled models don’t require any recompilation
at all, as these are interpreted during simulation. The complete behaviour of Cell DEVS
models is defined using the custom syntax, which is completely interpreted. A graphical
modelling environment, called CD++Builder [48], can be used to create the models. CD++
is a mature tool and is widely used in the literature for its Cell DEVS functionality [207,
259, 329].

DEVS-Suite DEVS-Suite [158] is the successor of DEVSJava [250]. Both are imple-
mented in Java. Its features include visualization of coupled model simulation, event
injection during simulation, and simulation tracking. Both atomic and coupled models



144 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

are written in Java and are loaded into the simulation tool through introspection. Changes
require recompilation of the model, but don’t require any action on the simulation tool. Both
DEVS-Suite and DEVSJava are frequently used in the literature [62, 110, 216].

MS4Me MS4 Modeling Environment (MS4 Me) [258] is a DEVS modelling environment
and simulator. It is written in Java and based on the Eclipse framework. Atomic models
are created using a custom, natural language-like language called DNL, combined with
fragments of Java code. Files are automatically translated to Java code, and subsequently
compiled. Coupled models can be constructed using System Entity Structure (SES) [159,
336, 339], which are pruned before simulation commences.

PowerDEVS PowerDEVS [39, 162] is a Classic DEVS modelling and simulation envi-
ronment implemented in C++. It consists of a graphical modelling environment, an atomic
model editor, and a code generator. The code generator generates C++ code, which can
optionally also be handwritten. PowerDEVS offers an intuitive modelling environment
(with user-definable icons for models), combined with a library of models which can be
reused, or used as examples.

PythonPDEVS PythonPDEVS [308] is a DEVS simulator written in Python. Due to its
implementation in Python, an interpreted, dynamically typed language, fast prototyping of
models becomes possible. Despite its interpretation-based nature, PythonPDEVS attempts
to achieve high performance. Both atomic and coupled models are written in Python,
making (re)compilation unnecessary. PythonPDEVS is used as the simulation kernel in
several other tools. For example, DEVSimPy [58] offers a graphical modelling environment
for coupled models, combined with an experimentation environment. A debugging front-
end [296] offers a graphical modelling environment for atomic and coupled models alike,
including advanced debugging capabilities.

VLE The Virtual Laboratory Environment (VLE) [226] is a multi-modelling and sim-
ulation platform written in C++. It includes an IDE for model development and experi-
mentation. Models are combined in “projects”, which are managed by an automatically
created CMake script. Atomic models are written in C++ and thus require recompilation of
the models after changes. The simulation kernel and IDE do not need to be recompiled.
Coupled models are created using either the graphical environment (called GVLE), or by
manually writing the XML files. VLE is the simulation kernel, with several bindings and
“apps” to add functionality, such as an IDE (GVLE), distributed simulation using MPI
(MVLE), Python bindings (PyVLE), and R bindings (RVLE).

X-S-Y X-S-Y [144] is a DEVS simulator written in Python. Its distinguishing feature
is the verification of FD-DEVS (Finite and Deterministic DEVS) models. A small
command line interface is provided, allowing for simulation control.



5.12. PERFORMANCE 145

A
D

E
V

S

C
D

+
+

D
E

V
S-

Su
ite

M
S4

M
e

Po
w

er
D

E
V

S

P
yt

ho
nP

D
E

V
S

V
LE

X
-S

-Y

Vendor Pedigree N N N Y N N N N
Documentation Y Y N Y M Y Y Y
Support N N N Y N N N N

Model Library N Y N Y Y N N N
and input Coding Y M Y M M Y M Y

Input M Y Y Y M M N M
Execution Speed control N M Y Y Y Y N Y

Multiple runs Y Y N N Y Y Y Y
Batch runs Y Y N N Y Y Y N
Parallel Y Y N N N Y Y N
Distributed N Y N N N Y Y N
Executable models Y N N N Y N N N
Termination condition Y N N N N Y N N

Animation Time Next N N Y Y N M N N
State N Y Y Y N M N N
Messages N N Y Y N M N N
Transitioning N N N Y N M N N
Sequence N N N Y N N N N

Testing Tracing Y Y Y Y Y Y Y Y
and Step function Y N Y Y Y M N Y
Efficiency Verification N N N N N N N Y

Backward clock N N N N N M N N
Interaction Y Y Y Y M Y N Y
Multitasking Y Y Y Y Y Y Y Y
Breakpoints N N N N N M N N

Output Delivery Y Y Y Y Y Y Y Y
Graphics N Y Y Y M N N N

User Orientation N M N M M N N N
Financial Y Y Y N Y Y Y Y

Table 5.3: General evaluation, based on [208, 278].

Features

To evaluate the set of features, we distill a list of evaluation criteria from [208], adapted
to the needs in DEVS modelling and simulation. Table 5.3 shows an overview of our
evaluation results. A feature is either present (marked as a green “Y”), not present (marked
as a red “N”), or only supported partially, with manual coding, or through the use of
extensions (marked as yellow “M”). Normally, such a comparison is made using scores and
weights [278], but this is omitted as this is highly dependent on the needs. More details can
be found in [313].

Compliance

Another important aspect of a DEVS simulator, is how well it complies to the formalisms it
supports. The original list of criteria for DEVS compliance [179] has been extended with
additional Parallel DEVS criteria [313], and the need for DEVS model initialization [317].
Some tools support additional formalisms that are unrelated to this thesis and are therefore
ignored. An overview is shown in Table 5.4.



146 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

A
D

E
V

S

C
D

+
+

D
E

V
S-

Su
ite

M
S4

M
e

Po
w

er
D

E
V

S

P
yt

ho
nP

D
E

V
S

V
LE

X
-S

-Y

Formalisms Parallel DEVS Y M Y Y N Y Y N
Classic DEVS N Y N N Y Y N Y

Compliance Translation functions M N N N N Y N N
Event modularity N M N N N M N N
Positive time Y N N M N Y Y N
Select function - N - - M Y - N
Confluent Y - Y N - Y Y -
Initialization N M M M M Y N N

Table 5.4: DEVS-specific evaluation, based on [179, 313, 317].

Q_send
Q_rack

car_out

Generator

Q_send
Q_rack

car_out

RoadSegment

Q_recv
Q_sack

car_in

Q_send
Q_rack

car_out

RoadSegment

Q_recv
Q_sack

car_in car_in

Collector

Figure 5.46: “Traffic” model, shown for 2 segments.

Performance

To evaluate the performance of all mentioned tools, a simplified version of a Kiltera
benchmark [221] is used. The model does simple traffic simulation, where cars progress
over a road, and slow down or speed up based on the cars in front of them.

The model itself consists of a generator, some road segments (processors), and a collector,
as shown in Figure 5.46. After a randomly sampled time, a car is generated by the generator.
The generator outputs the car and sends it to the connected road segment. Every road
segment processes the car for a certain time (depending on the velocity), after which it
is sent to the next road segment. A car can accelerate or decelerate, depending on their
prefered speed, the speed limit of the road segment, and the cars in front of them. To
prevent car collisions, road segments communicate with each other through the use of
queries and acknowledgements. As soon as a road segment receives a new car, it sends a
query to the next road segment, requesting whether the next road segment is free. It gets
an acknowledgement back, stating how long it will take for the road segment to become
available. The car at the current road segment will adjust its speed accordingly, depending
on the maximal acceleration and deceleration values. If a road segment does not receive an
acknowledgement in time, the car goes on to the next road segment without adjusting its
speed. At the end of the road segments, a collector receives all cars and computes average
velocity and average deviation from the prefered velocity. These statistics are used to test
the correct implementation of the model in the various simulation tools.

Figure 5.47 shows the results of the Traffic benchmark. This shows the high performance
of ADEVS, VLE, and PowerDEVS. PythonPDEVS comes in fourth, followed by the other
tools. A more detailed analysis of the results can be found elsewhere [313].



5.12. PERFORMANCE 147

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  50  100  150  200  250  300

C
P

U
 t
im

e
 (

s
)

Road segments

Traffic

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250  300

C
P

U
 t
im

e
 (

s
)

Road segments

Traffic

adevs
CD++

DEVS-Suite
MS4Me

PyPDEVS (CPython)

PyPDEVS (PyPy)
vle

X-S-Y (CPython)
X-S-Y (PyPy)
PowerDEVS

Figure 5.47: Benchmark results for the “Traffic” benchmark. The left figure uses a
logarithmic scale, whereas the right figure is zoomed in on the fastest tools and uses
a linear scale.

Summary

Given the provided results in terms of supported functionality, compliance, and perfor-
mance, PythonPDEVS proved to be a well-balanced tool for our applications. Additionally,
PythonPDEVS and the Modelverse rely on Python for non-model code, making it easy to
reuse existing Modelverse code in the model.

5.12.3 Model

We now model the previously presented components using PythonPDEVS. We model the
three main components of the Modelverse, as presented before: the Interface (MvI), Kernel
(MvK), and State (MvS). For each component, we reuse as much of the original code as
possible. As such, most execution logic (i.e., non-modal code) is simply imported and
reused in the DEVS model, though some minimal DEVS wrapper code is necessary to
make this fit in the DEVS formalism. By reusing existing logic, we are sure that the same
behaviour is visible. The network inbetween all of these components must also be modelled:
this is part of the environment that we have to model explicitly.

Modelverse Interface

The MvI was responsible for the creation of the high-level operations. While normally done
by the user interactively, for example by clicking a button, we assume that this is provided
as input to the simulation. The set of high-level operations to execute, is that of a power
window modelling and safety verification [316].



148 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

Model Due to the previously made restrictions, the DEVS model of the MvI is rather
simple. It contains a list of operations to execute, and a set of operations to execute for
specific models (e.g., details on how to model a control model). Whenever an operation
is sent, we wait for a reply before sending the next request. While usually the reply is
presented to the user, it is now thrown away, as we operate in batch mode. Despite this
simple explanation, the DEVS model is quite convoluted, as we have to implement an
autonomous MvI from scratch. For each response that the MvI receives, it checks whether
it has to stop the simulation. This is done by setting a state variable, which is used by the
termination condition.

Calibration As there are not many parameters to the MvI, not a lot of calibration was
required. The list of operations to be executed, however, needs to be defined. As previously
mentioned, we used the power window case study, for which we needed the list of high-level
operations. To obtain the list of actual requests used, a real run of the Modelverse was
instrumented with logging, thereby logging the various high-level operations sent to the
Modelverse. This resulted in a set of no less than 16,000 requests, grouped in 75 “request
blocks”, as many requests don’t depend on the result of the previous ones. A single group
is sent simultaneously, thereby reducing the round trip time, as it is also done in the real
execution of the Modelverse.

Modelverse Kernel

The Modelverse Kernel was responsible for the computations: converting the high-level
model-management operations to low-level graph operations. As we reuse much of the
logic from the actual Modelverse code base, this model is mostly a wrapper around
that logic. Nonetheless, task management had to be reimplemented to suit the DEVS
formalism.

Model The DEVS formalism requires to have full control over timing behaviour. This did
not suit well with the original specification of the task management of the MvK, which was
modelled with SCCD [298], instead of coded. While this is ideal for execution, generated
SCCD code contains timing information and threading, making it unusable in a DEVS
model. All task management was reimplemented in DEVS, with behaviour similar to the
original implementation. Most of the other code, specifically the translation code, was
reused.

Calibration The MvK needs some calibration, as the computations take time. This was
not needed in the MvI, as we abstracted away the time needed by the MvI to come up
with the next high-level operation. We cannot do this for the MvK, as there are be many
steps involved in translating the high-level operations to low-level operations. We have
implemented two types of interpreter: one based on pure interpretation, and one based on a
Just-In-Time (JIT) compiler. The pure interpreter will take less time to do the conversion to
low-level operations, but will generate more low-level operations. On the other hand, the
JIT will take much more time for the conversion, but generates significantly less operations.
Results were measured by doing a first DEVS simulation run, where the computation was
actually performed, and the time measured. This gives a large set of samples: 34, 638, 621



5.12. PERFORMANCE 149

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 0  2x10 -6

 4x10 -6

 6x10 -6

 8x10 -6

 1x10 -5

F
re

q
u

e
n

c
y
 (

ti
m

e
)

Duration (s)

Operation rule_generation

Figure 5.48: Distribution of time
taken for rule generation in the MvK.

operation samples averages
read root ID 1 0.00000286s
read dictionary 13,456,485 0.00000111s
read dictionary keys 181,314 0.00000804s
read node value 14,538,084 0.00000034s
read dictionary by node 491,026 0.00000179s
read dictionary edge 503,147 0.00000289s
create node 775,370 0.00000068s
create value 2,157,118 0.00000092s
create dictionary 1,329,637 0.00000452s
delete edge 1,489,940 0.00000288s
delete node 31,092 0.00000854s
dictionary key lookup 9,093 0.00001803s
create edge 5,263,314 0.00000184s
read outgoing edges 4,627,855 0.00000150s
read incoming edges 1,325,308 0.00000178s
read edge 3,913,127 0.00000039s
garbage collect 21 0.88014233s

Table 5.5: MvS operations and the measured calibra-
tion results.

to be precise. For the JIT, the distribution of these values is shown in Figure 5.48. Most
operations take a relatively short time (compiled operations), and some take significantly
more time (interpreted operations and compilation). For the pure interpreter, all invocations
are nearly instantaneous.

Modelverse State

The Modelverse State was responsible for state manipulations. Again, we reuse almost all
logic from the graph database that underlies our implementation, and therefore the DEVS
model for this is merely a wrapper which monitors the time the operation takes.

Model The DEVS specification of the MvS is trivial: when receiving a list of low-level
operations, the operations are executed in order, and the simulation time is incremented with
the time it takes to execute the operations, which is sampled from a distribution. Results
are subsequently sent back to the MvK.

Calibration Calibration is again required to determine how long each of the low-level
operations takes. For this, the same approach is used as with the MvK: first do a “calibration
run”, in which timing information for each operation is recorded. Table 5.5 presents how
many samples were made for each of the low-level graph operations, and gives some
information on the values found. Some operations are not executed that frequently, as the
JIT was used, thereby lowering the number of low-level operations.

Network

Apart from the Modelverse components, our DEVS model also requires an explicit model
of the network. While normally the network is used as-is, for example through the use
of sockets, we now explicitly model this, giving us full control. This DEVS model only



150 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

has to model latency and bandwidth. Other network characteristics, such as routing and
packet loss, can be ignored, as the original application also relied on TCP/IP to handle
these aspects. As we are not interested in any of these characteristics in particular, we can
abstract these away in this model.

Model The DEVS model of our network is relatively simple, and only models latency
and bandwidth. For each incoming message, we delay the sending by a time that is equal to
the latency (a fixed cost), and add the time due to the restricted bandwidth. As such, the
message is serialized using JSON, which results in a string that has to be transferred over
the network. This string has a number of characters, and thus a number of bytes, as we use
ASCII encoding. Using this information, and the maximum bandwidth, we can compute
the time it takes for the message to pass over the network.

Calibration For the network, calibration is again required, as we need to find values
for the latency and the allowed bandwidth. Tools like ping can be used to estimate the
round trip latency, and tools like iperf can estimate the network bandwidth. When two
components are ran on the same machine, latency and bandwidth can be abstracted to zero
and positive infinity, respectively. After the various operations were calibrated, the model
was validated against the running Modelverse that was used for calibration.

5.12.4 Evaluation

We now apply this model for our original purpose: performance evaluation. We consider
four aspects of performance analysis that are influenced: what-if analysis, benchmark
automation, determinism, and benchmark performance.

What-if Analysis

First is the possibility for what-if analysis. While with usual benchmarks, we need to have
access to the benchmarking hardware to generate meaningful results, a what-if analysis
allows us to use a hypothetical set-up. This makes it possible to prototype specific hardware,
such as a low-latency network, without actually having to invest in it beforehand. Indeed,
it might not be worthwhile the investment if the benchmark results prove insatisfactory.
Additionally, we can explore a set of possibilities, optimizing the total cost.

With a DEVS model, what-if analysis becomes possible. For example, we can easily change
the network latency parameter from 0ms (e.g., local execution) to 500ms (e.g., satellite
connection), and see the effect. Figure 5.49 and Figure 5.50 present results for varying
network latencies between the MvI and MvK, and the MvK and MvS on the total execution
time, respectively. These results indicate that we can increase the latency between the MvI
and MvK without too many problems, which is one of the requirements of the Modelverse:
it must be able to run distributed, with MvIs running on various machines, possibly even
over the internet (i.e., relatively high latencies). Although the execution time does increase,
it less than doubles when going from an instantaneous connection (0ms latency) to a high
latency connection (> 100ms latency). The MvK and MvS, however, should ideally be ran
with very low latencies, as the results indicated: execution time is highly dependent on this



5.12. PERFORMANCE 151

 100

 1000

0

0
.8

5 6

1
0

5
0

5
0

0

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Latency (ms)

MvI to MvK latency simulation

Figure 5.49: Influence of MvI - MvK la-
tency.

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

0

0
.8

5 6

1
0

5
0

5
0

0

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Latency (ms)

MvK to MvS latency simulation

Figure 5.50: Influence of MvK - MvS la-
tency.

latency. While not ideal, this does not form a significant problem: the MvK and MvS are
two server-side components, and are likely hosted close to one another.

These results are as expected, though they still provide added value: we can quantify
how long it will take, up to some degree of certainty. For example, we can now state
that the performance is tolerable, even when using a high-latency connection between
MvI and MvK. For performance critical software, hard restrictions are often imposed on
the acceptable delays, rendering quantification important. Similarly, for the MvK and
MvS we intuitively know that splitting them is not a good idea performance-wise, as they
communicate a lot. Nonetheless, through simulation we can quantify the expected execution
time, allowing for a trade-off. Constraints and costs can be combined with the execution
time to find a cost-optimal solution.

Notwithstanding these advantages of the DEVS model, it remains an abstracted simulation.
As such, results will not be perfectly accurate, though rather to be within some bounds
around the actual values. The more fine grained the model becomes, the less abstractions
are made, and the more accurate the results become. However, less abstractions will also
increase the simulation time. For our purposes, the current level of abstraction proved
sufficient.

Automation

A second advantage of using simulation is that everything can be fully automated. Going
back to our previous example of network latency, it is immediately obvious that we cannot
automatically switch the system over to various types of network, even if we were to have all
the required hardware. More complex hardware changes, such as disconnecting a network
cable, or swapping the CPU, are even more difficult to do automatically. As such, these
operations are done manually, introducing manual intervention and thus non-determinism:
the point in time when the cable is manually disconnected, will vary between two simulation
runs, even if only by a few milliseconds.

With a DEVS model, all these operations become trivial to execute, as all relevant aspects
of the system, such as the network, are modelled explicitly. Disconnecting a network cable
is then just sending an event to the network model, which subsequently no longer transmits
messages. All results presented in this paper were obtained completely automatically, and
without the use of any platform-specific operations. Additionally, by disconnecting from



152 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 270  275  280  285  290  295  300

S
a

m
p

le
s

Execution time (s)

Execution time jitter

Figure 5.51: Actual execution results.

the platform, it becomes possible to run multiple simulations simultaneously, as all platform
changes are simulated as well.

Determinism

A third advantage of using simulation is determinism. Normal benchmark execution,
on actual hardware, has many causes of non-determinism: a shared-resource machine,
a shared network, varying network characteristics, and so on. While it is possible to
replicate benchmark results, they are only identical to some level, and it might take several
tries. If execution takes a significant amount of time, we often do not want to execute
the same program multiple times. Additionally, it makes it difficult for others to replicate
results.

With a DEVS model, determinism is achieved by modelling all sources of non-determinism,
such as the network and computation times, explicitly. Changes to the setup can be evaluated
with a single simulation run, which then automatically reuses exactly the same simulation
setup, as all data is deterministic. Not only will this result in exactly the same behaviour,
but it will also immediately show the impact of changes on performance, without non-
deterministic jitter on the results. Of course, the performance effect in general still requires
multiple simulation runs with varying seeds. Figure 5.51 presents the result of several
actual execution runs of the program. While there is less than 10% difference between all
executions, the difference is noticeable. With simulation, results are always equal, given
the same random seed.

Performance

A fourth advantage of using simulation is that simulation is often faster than executing
the actual application. During execution of the program, only a part of it is spent on
actual computation, as much overhead exists: task switching, network timeouts, network
transfer delays, and so on. During simulation, mostly the same code is still executed as
in the original application, though we can skip many of these sources of overhead. For
example, network latency only affects simulated time, as the network is not actually used,
but only simulated. As such, high network latencies (e.g., 500ms) will not take much



5.12. PERFORMANCE 153

 100

 1000

0

0
.8

5 6

1
0

5
0

5
0

0

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Latency (ms)

MvI to MvK latency influence

Execution time
Simulation time

Figure 5.52: Varying MvI - MvK latency.

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

0

0
.8

5 6

1
0

5
0

5
0

0

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Latency (ms)

MvK to MvS latency influence

Execution time
Simulation time

Figure 5.53: Varying MvK - MvS latency.

longer to simulate than no network latency at all (i.e., 0ms). Similarly, simulations can
happen on fast computers, while using the time that a slow computer would process on
it. This is advantageous, as the wall clock time then progresses slower than the simulated
time, meaning that simulation becomes faster than actual execution. Notwithstanding
these speedups, simulation also introduces its own types of overhead. While this is not
to be ignored, the overhead induced by the network is generally larger than the simulator
overhead.

Figure 5.52 presents the difference between the time needed for simulation, and the simu-
lated execution time for a range of different latencies between the MvI and MvK. In this
case, simulation is always slower than actual execution, as this network connection is not
frequently used. This is comparable to the results we had before, where we saw that the
influence of this latency on execution time is minimal. We do, however, notice that the
simulation time also increases, which was against expectations. It seemed that the JIT
compiler, which is a core component of the MvK, reacts differently depending on how
much time it takes to execute some functions.

Figure 5.53, on the other hand, shows the results for varying the MvK to MvS latency.
Here, the simulation time also increases, though far less than when executing the actual
system. In this case, simulation clearly outperforms actual execution: for 500ms latency,
simulation is more than 24, 000 times faster.

5.12.5 Related Work
The traditional approach to performance evaluation is the creation of benchmarks, which
execute the application and measure how long it takes. While this yields trustworthy
results, there were many potential problems, as mentioned in this paper. DEVS modelling
has been used before to measure the performance of software applications, for which we
now give some examples. One DEVS model was for a distributed DEVS simulator [272],
where the DEVS abstract simulator was modelled using DEVS itself. This was primarily
done to monitor the behaviour of the simulator in exceptional cases, such as when a
disconnect happens. Not many details were given on the calibration of the model, and
the DEVS simulator itself was not performance-critical in this paper: it was a minimal
distributed DEVS simulator without advanced synchronization protocol. As such, no
attention was payed to the performance of the application. Another DEVS model is that
for a new algorithm for property-based locking in collaborative modelling [87]. Here,



154 CHAPTER 5. MODELVERSE DEVELOPMENT USING MPM

DEVS was also used for the context of (distributed) execution, though the focus was not on
execution performance, but on deterministic simulation as to whether a lock was granted or
rejected.

5.12.6 Link to Requirements
Explicitly modelling the performance has an influence on Requirement 2 (Activities),
Requirement 4 (Multi-User), and Requirement 10 (Portability).

Requirement 2 (Activities) is influenced, as the DEVS model can be used to optimize the
performance of the execution of activities. It does not directly influence the possibility of
having activities, though their efficiency is crucial to their usability.

Requirement 4 (Multi-User) is influenced, as the performance of resource sharing can be
analyzed using a DEVS performance model. Various situations can be tested, and possibly
different algorithms for resource sharing can be compared in a meaningful way.

Requirement 10 (Portability) is influenced, as performance normally significantly de-
pends on the platform. If a different platform is used, performance results can often not
be reproduced. Even when the same platform is used, different benchmark runs will have
some jitter due to the other load present on the platform or due to external non-deterministic
behaviour, such as network latencies.

Summary
We created a performance model of the Modelverse in the Parallel DEVS formalism,
thereby splitting wall clock time and simulated time. This makes performance analysis
and optimization easier and less ad-hoc: we achieve full control over time. This allows
for what-if analysis, deterministic and fully automated benchmarks, and potentially faster
benchmark results. Results can also be applied for performance optimization. For each
aspect, we described how our DEVS model addresses these problems, resulting in the
aforementioned advantages. We believe that this approach is similarly applicable to many
other complex, distributed applications.

Summary
We have described all aspects that make up the Modelverse, and shown how they are
modelled. While all aspects were modelled (to some degree), several of them provided
not too many benefits apart from faster development time, portability, and increased un-
derstandability of the application (e.g., documentation). These are the usual advantages
attributed to modelling. Other aspects proved more worthwhile to model explicitly, as
their explicit models enabled additional benefits in several domains related to MPM. These
form the primary contributions of this chapter. Explicitly modelling the conformance
algorithm proved useful to enable meaningful model exchange between different tools and
allowed for multiple conforming metamodels simultaneously [314]. Explicitly modelling
the physical type model in the linguistic dimension proved useful to make models and
algorithms independent of implementation details, allowing it to be changed at runtime.
Explicitly modelling the interaction with external service using SCCD proved useful to



5.12. PERFORMANCE 155

integrate (multiple) existing external black-box tools while retaining full control and an-
alyzability over its behaviour [297]. Explicitly modelling the enactment of an FTG+PM
by mapping it to SCCD proved useful to rely on existing operational semantics, while
potentially allowing for increased analyzability when combined with explicitly modelled
activities [297]. Explicitly modelling the action language proved useful to integrate code
fragments in existing models and meaningfully operate on existing code fragments, while
also significantly increasing portability of the Modelverse and all generated models [304].
Explicitly modelling the performance proved useful to allow for what-if analysis and reduce
execution jitter, but also to decrease the time needed for benchmarks. Even though each
component and all mentioned benefits could equally well have been achieved without the
use of explicit models, it would likely be harder to achieve.





Chapter 6

Modelverse as a Foundation for
MPM

To illustrate the value of the Modelverse for further research in MPM and to show that it
is applicable to the concerns of the three types of users considered, several contributions
are built on top of our tool. Each contribution can be considered stand-alone in the domain
of MPM, and is often published as such. All contributions rely on MPM, thereby relying
on the Modelverse, and are often valuable in the context of MPM as well, thereby being a
contribution to MPM. We provide a motivation as to why this contribution is useful, explain
the approach, and subsequently evaluate it. We consider three contributions, one for each
type of user considered: the modeller (Section 6.2), the language engineer (Section 6.3),
and the Modelverse tool developer (Section 6.4). First, however, we present how the
Modelverse addresses the Power Window case study, thereby illustrating its full support for
MPM (Section 6.1).

6.1 Power Window Case Study
To indicate that the Modelverse is capable of full support for MPM, we first show how it
handles the enactment of the FTG+PM for our power window case study. This FTG+PM,
previously introduced in Figure 2.22, but repeated here in Figure 6.1, is modelled explicitly
in the Modelverse. At the left hand side, the FTG presents the different formalisms used
(e.g., Plant, Environment, ReachabilityGraph), as well as all operations between them (e.g.,
Plant2EPN, Combine, Analyze, Mark). At the right hand side, the PM presents the order
in which these operations are defined, as well as the specific modelling artefacts that are
propagated between operations (e.g., Combine combines the Encapsulated Petri Nets which
originate from the Plant, Control, and Environment, together with the architecture model).
The flow of the problem at hand is easy to deduce: domain experts create models for the
plant, control, environment, architecture, and safety query in a domain-specific language,
following the requirements defined beforehand. The plant, control, and environment model
are individually translated to Encapsulated Petri Nets (i.e., Petri Nets with ports), which
are merged together with the architecture model. The resulting Petri Net is analyzed for
reachability, on which the safety query is executed. If the query is found, an unsafe situation

157



158 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

FTG PM

req
:Requirements

plant
:Plant

:Marked
PetriNets

env
:Environment

query
:SafetyQuery

:Encapsulated
PetriNets

ctrl
:Control

:Reachability
Graph

:Encapsulated
PetriNets

Requirements

Plant

Environment
 

Control

Safety
Query

Encapsulated
Marked

PetriNets

Marked
PetriNets

Reachability
Graph

revise
plant

revise
env

revise
ctrl

revise
query

make
initial

combine

mark

analyse

plant
toPN

env
toPN

ctrl
toPN

revise
req

Architecture revise
arch

:Encapsulated
PetriNets

arch
:Architecture

True

False

revise
req

revise
plant

revise
env

revise
ctrl

env
toPN

ctrl
toPN

combine

revise
query

analyse

mark

make
initial

plant
toPN

revise
arch

bfs_print

bfs_print

Figure 6.1: FTG+PM of our example: the development and verification of a simplified
power window.

can be reached and a counter-example is presented in the form of a series of operations.
Users are then prompted to make revisions to their models. If the query is not found, the
system is deemed safe, and the process finishes.

We consider the various aspects of MPM, as reflected in our requirements, and how they are
supported by the Modelverse. While we could not guarantee that this list of requirements
was complete, the following evaluation on a case study shows that these requirements are at
least sufficient.

6.1.1 Requirement 1: Domain-Specific Modelling
Multiple domain-specific languages were implemented in the use of the Power Window
case study. An overview of the various domain-specific models and languages is shown
in Figure 6.2. At the topmost level, we see ClassDiagrams as the meta-circular level.
Below, we see all formalisms used in the example, which were all created through lan-
guage engineering. At the lowest level, all instances of the engineered languages are
shown.

For example, the metamodel of the plant language is shown in Figure 6.3, containing
the different concepts that can be used: two kinds of state, and three kinds of transitions.
Similar metamodels are present for the other languages as well.

These different domain-specific languages were subsequently used to model each part of
the system: the environment (Figure 6.4), safety query (Figure 6.5), control (Figure 6.6),



6.1. POWER WINDOW CASE STUDY 159

ClassDiagrams

Reachability

Graph

graph

PetriNets

pn

Control

DSL

ctrl

Plant

DSL

plant

Query

DSL

query

Environment

DSL

env

Encapsulated

PetriNets

plant_epnctrl_epn env_epn

Architecture

arch

Requirements

req

Figure 6.2: Meta-modelling hierarchy of the example.

Figure 6.3: Plant metamodel, describing allowed constructs for a plant model.

plant (Figure 6.7), and architecture (Figure 6.8). These models are compact and provide
a much more conceptually clear overview of the parts of the system, than if it were to be
done in a GPL. Additionally, these models are closer to the problem they are modelling and
require no knowledge of programming.

6.1.2 Requirement 2: Activities
For all domain-specific modelling languages made before, activities were defined to map
them to the semantic domain of Petri Nets. Using all these Petri Net models, which are
woven together, a single Petri Net is constructed that can be verified using the safety
query.

Many approaches exist to model activities, though the Modelverse implemented model
transformation using RAMification [171] and a procedural action language. In the spirit of
modelling all activities using the most appropriate formalism, we present some different
activities used in the Power Window case study.

Translating domain-specific languages to more general purpose languages is often done
through model transformations, as we can remain at the domain-specific level. An ex-
ample model transformation rule is shown in Figure 6.9, where the environment model
is mapped to a Petri Net. Note the presence of traceability links (label 7 and 8), which
will be mentioned again later on. Model transformations are the most appropriate for this
translation, as model transformations automatically find all possible combinations. For
example, the two matched events (A and B) might not be the only ones in the group, and
there are actually two ways to switch between them (from A to B, and vice versa). Using

cmdUp

cmdDown

cmdNeutral

no_objPresent

objPresent

keypress object

Figure 6.4: Environment
model.

high_mid

Figure 6.5: Safety query
model.

Y

!0

Figure 6.6: Control model.



160 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

!!
Y Y

low
top

low
mid

low
bottom

medium
top

medium
mid

medium
bottom

high
top

high
mid

high
bottom

N

Figure 6.7: Plant model.

control

cmdUpcmdDown
cmdNeutral

objDetected

no_objDetected

up

down

neutral

interrupt

environment

no_objPresent

objPresent cmdUp

cmdDown

cmdNeutral

plant

objDetected

no_objDetected

no_objPresentobjPresent

up

down

neutral

interrupt

Figure 6.8: Architecture model.

A

B

0

1

2
3

4

5

6

7

8

910

11

A

B

0

1

2
3

4

5

6

7

8

Figure 6.9: Rule for transforming the environment model to an encapsulated Petri Net.

model transformations, all cases are immediately taken care of using only a single, intuitive
transformation rule.

Merging together the different models is ideally done using action language in this case,
as it is mostly a retyping operation. Indeed, we only have to merge different models into
a single model, which is automatically done by the Modelverse, but then have to retype
everything to the output metamodel. While this could be done with model transformations
as well, we would have to define several rules (mapping nodes, mapping links) for each
input metamodel. Using a procedural action language, this only takes a few lines of model
management code, as shown in Listing 6.1.

1 include "primitives.alh"
2 include "modelling.alh"
3

4 Boolean function main(model : Element):
5 Element keys
6 String key
7 Element split
8

9 keys = dict_keys(model["model"])
10 while (set_len(keys) > 0):
11 key = set_pop(keys)
12 split = string_split(read_type(model, key), "/")
13 retype(model, key, string_join("Encapsulated_PetriNet/", split[1]))
14

15 return True!

Listing 6.1: Merging activity for Encapsulated Petri Nets.

In the FTG+PM, no difference is seen between these two types of activities, as they are
completely transparent to the user executing them. A third type exists, being manual
activities. These are highlighted in black in the FTG+PM, and have to be manually executed
by the modeller. In the Modelverse, when executing a manual activity, the modeller is
presented with a limited modelling environment where the specified model can be modified.



6.1. POWER WINDOW CASE STUDY 161

Plant

ControlEnvironment

Figure 6.10: Combined Petri Net, automatically generated from the DSL models.

As much as possible is still done automatically though, such as merging input models and
metamodels and splitting of their result.

6.1.3 Requirement 3: Process Modelling
All these domain-specific languages, models, and activities are present in the Modelverse.
There was, however, no order in which this should happen, and how data has to be utilized.
An FTG+PM model can then be added, which links everything together and structures the
execution order of activities. This process model, as was shown in Figure 6.1, can not only
be used for documentation, but also for enactment.

During enactment, modellers are prompted with activities that they have to perform, mean-
ing that they are often not burdened with intermediate artefacts. For example, the composed
Petri Net, shown in Figure 6.10, is never shown to the modellers, though it is generated
and is the model that is analyzed. Even better: not a single Petri Net model is shown to
modellers at all, as this translation also happens automatically. With the process model, we
see that there are only a few manual operations, where domain experts must model their
part of the system. Afterwards, they get feedback on whether the total model is safe or not.
Modellers remain unaware of the technology that obtains this result.

6.1.4 Requirement 4: Multi-User
As is natural in this case, multiple users will collaborate on this single power window case
study. For example, there will be a plant engineer and control engineer, both experts in
their respective domain. Given that the process model dictates that all manual modelling
operations happen concurrently, up to five different users will work concurrently for this
problem only. As the Modelverse is a server, there will be many models being worked on
in parallel as well.

To allow for these multiple concurrent users, the Modelverse spawns new tasks for each
activity being executed in the process model. Users are then notified of the task they



162 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

should connect to, making it extremely simple for users to work concurrently. Inside the
Modelverse Kernel, these different concurrent tasks are coordinated using SCCD to offer
concurrency and fair sharing of computational resources.

6.1.5 Requirement 5: Multi-Service
While we previously presented activities in different formalisms, we often want to reuse
existing tools. For example, Petri Net reachability analysis has been implemented by
many specialized tools, and should therefore be easy to reuse. While it is possible to
reimplement in the Modelverse, using the procedural action language, this is unlikely to be
as efficient.

The Modelverse has built-in support for several external services, implemented in a variety
of programming languages. For example, by default there is support for a file creation
service (writing out files) and a HUTN compilation service (used when compiling textual
models). Additionally, several more complex services are included, such as PythonPDEVS
(for DEVS simulation) and LoLA (for Petri Net analysis). For this case study, we have used
LoLA to perform the state space analysis, based on the specified safety query.

This single process already used multiple services: the HUTN service to compile the
uploaded models and the LoLA service to analyze the generated Petri Net. Note again that
in the Modelverse, modellers will be unaware that LoLA is used to do the analysis, as this
is completely transparent.

6.1.6 Requirement 6: Multi-Interface
The different modellers and their different background naturally raises the need for multiple
interfaces. The simple interface provided by the Modelverse, and the associated client
wrapper in SCCD, makes it easy to implement new interfaces. As could be seen, we
have implemented four different types of interface: textual, graphical, API, and direct
XML/HTTPRequest based. All these interfaces can equally well be used to work on the
process model of the Power Window case study.

In the process, each manual operation spawns a new instance of the prototype GUI, although
it is trivial to spawn a different GUI. The only requirement is, however, that the GUI is able
to interact with the Modelverse in one way or the other.

6.1.7 Requirement 7: Model Sharing
In the Modelverse, everything is a model. This is great in the context of model sharing, as
this encompasses literally everything in the Modelverse. Users can share and reuse not only
models, but also metamodels, activities, and processes.

In the Power Window case study, the languages are probably created by other people
than the modellers in those languages. As such, there is already a need to share different
models between one another. Similarly, multiple modellers might want to work on the same
model and therefore require access to this exact same model. Sometimes, languages can
be reused from other projects, such as the Petri Nets and Encapsulated Petri Nets in the
Power Window case study. Indeed, these different languages are general purpose and many
applications can be found. By reusing these languages, we are also reusing the activities



6.1. POWER WINDOW CASE STUDY 163

defined on them, such as analyzing the reachability graph. For the Power Window case
study, this means that we wouldn’t have to reimplement almost half of the languages and
activities used.

6.1.8 Requirement 8: Access Control

Logically, it should be possible to limit the amount of data being shared, as mandated by
access control. For example, in the Power Window case study only plant engineers can
be allowed to open the plant model, thereby hiding the intellectual property stored in the
model. Similarly, languages can be marked as readable by the engineers, but only language
engineers have write permissions, thereby preventing modellers from messing with the
language itself. This access control was implemented in the Modelverse by using groups
and users, meaning that different users can share a set of permissions.

6.1.9 Requirement 9: Megamodelling

Megamodelling allows users to link different models together, for example through trace-
ability links. In the Power Window case study, two types of megamodels are actually
used. The first type is the FTG+PM that is stored, which references the different models,
languages, and activities used throughout the process. A second type of traceability links
are stored in a separate model that binds other models together. These links were necessary
to allow feedback to the modellers when a counter-example is found, but is also required in
model transformations to find the target element of a source element.

6.1.10 Requirement 10: Portability

Finally, throughout this thesis many references were made to the Modelverse being portable.
This is also reflected in the Power Window case study, where modellers are never exposed
to the platform of the Modelverse. It is therefore perfectly possible to implement a different
Modelverse, still adhering to our specification, and have it do exactly the same thing. And
indeed, as part of a Bachelor’s honour project, a new stand-alone implementation of the
Modelverse Kernel was constructed which uses JIT compilation. While both implementa-
tions were written in Python, a great language for prototyping, this choice was not made to
cope with limitations of the foundation.

Additionally, the use of services makes it possible to communicate with existing tools,
whatever platform they run on. For example, LoLA, as used in the Power Window case
study, is implemented in C, though this could be anything as long as it could be wrapped in
one way or the other.

Summary

For each of the original requirements, we illustrated how the Modelverse addressed them,
using a single Power Window case study. While this case study was relatively small, it still
touched upon all requirements that we originally identified. Full support for this case study
thereby indicates that the Modelverse can be considered as fulfilling the requirements we
set out for.



164 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

6.2 Live Modelling
We first consider the modeller, being the most common type of user. The modeller is
responsible to create an accurate model of the system in question. In particular, this means
that the behaviour on the model should be identical to the behaviour on the actual system,
given some property of interest. As such, the user is mostly concerned with model creation
and comprehension. This is where model debugging [294] comes into the picture: the
model and the system do not agree on some property, while this should be the case. Model
debugging can then be used to find out why they do not agree, and potentially later on solve
the issue.

One technique that is know to increase model comprehension, is live modelling [289, 302].
Originally coming from the programming domain, live programming allows programmers
to dynamically change the source code of a running application. This increases code
comprehension, as there is direct feedback on changes due to the reduced edit-compile-
debug cycle. Live modelling then applies this same technique to modelling, where an
executable model is modified directly, with the changes being dynamically taken into
account in the running execution (e.g., a simulation).

We present an explicitly modelled framework for the definition of live modelling languages:
all aspects of the approach, including the process, are explicitly modelled and are part of
the contribution. Our approach therefore relies on support for MPM, as otherwise the use
of an FTG+PM would not be possible. Additionally, our approach is especially useful in
the context of MPM, where various domain-specific formalisms are used and processes can
be enacted.

6.2.1 Motivation
Recently the use of models has shifted more and more from documentation to execution,
for example through code generation [154] or simulation/interpretation. This brings forth
the need for debugging the execution, as seen in the programming community. While there
is a growing interest in model verification, not all models can be verified due to the size of
the state space, or due to lacking (efficient) tool support. Furthermore, model verification
can indeed help find whether a system is correct, but it is often unable to track down the
source of the violation. As such, debugging is a vital part of the modelling process.

Commercial modelling and simulation tools often provide limited support for debugging.
The research community has recently made several contributions that enable specific
debugging features for several types of languages [50, 63, 182, 218, 333]. Compared to
code debugging, for which there is a wide variety of debugging operations [342], current
modelling tools are still in their infancy in terms of features, applicability, and usability.
It is therefore tempting for system developers to debug the automatically generated code
directly, instead of the model itself [96].

Live programming [276] is an advanced feature of several programming tools, allowing pro-
grammers to modify the code of applications while the application is running, immediately
having the new code integrated in the running application. There is no apparent compile
and re-run cycle, reducing the cognitive gap between code and program. More importantly,
the state of the running application is (partially) retained between versions, removing the
need to redo all operations up to the point in time where the change was made. While there



6.2. LIVE MODELLING 165

are already several tools that support live programming, making a programming language
“live” is done ad-hoc, and is refered to as a black art [55]. As such, it is difficult to transpose
liveness techniques between languages.

We transpose the essence of live programming to the modelling domain, in a generic way.
Contrary to live programming, where only a single language is considered most of the time,
domain-specific modelling raises the need for many different domain-specific languages.
Many of these domain-specific languages only have a handful of users, rendering the
investment for implementing live modelling techniques in an ad-hoc way difficult to justify.
Therefore, live modelling should be implemented in a generic way, making it applicable to
many modelling languages with minimal effort. Support for live modelling was identified
as a key feature to advance the usability of model-driven techniques [168]. The research
question thus is “how can live programming concepts be ported to the modelling domain,
making them generically applicable”. Despite mostly being presented as a debugging
operation, live languages can be applied to other situations as well, such as education or
model comprehension in general.

To tackle this problem, we deconstruct the traditional live programming process, and
reconstruct it in the context of modelling by applying concepts and techniques from live
programming to executable modelling languages. The various aspects of liveness are
categorized in generic activities and formalism-specific activities. All formalism-specific
activities are distilled into a single operation, which we term sanitization. To make a new
language live, only the sanitization operation should have to be updated, while reusing all
other aspects of live modelling. Note that, as liveness only applies to executable modelling
languages, we only consider executable modelling languages (or “formalisms”).

We distinguish between three types of executable modelling languages for which the
implementation of the sanitization operation is fundamentally different. For each, we
present a representative example, used throughout as a running example: Finite State
Automata (FSAs) [143], Discrete Time Causal Block Diagrams (DTCBDs) [61], and
Continuous Time Causal Block Diagrams (CTCBDs) [61].

6.2.2 Background
We first present the necessary background in live programming and executable mod-
elling.

Live Programming

Live, or interactive, programming aims to bridge the “gulf of evaluation” [180, 289]. It
allows users to update the source code of an application while it is running, with changes
being applied instantly in the running application. There is therefore no need to manually
recompile, restart, and rerun the program up to the point of execution when the modification
was made. This has several advantages, such as decreasing the length of the edit-compile-
debug cycle, and offering users immediate insight in the effect of code changes. An example
of live programming, as implemented by ElmScript [74], can be seen online1.

Basically, the process of live programming is as follows.

1http://debug.elm-lang.org/

http://debug.elm-lang.org/


166 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

SCORE: 1

(a) Original configura-
tion.

SCORE: 0

(b) No live program-
ming.

SCORE: 0

(c) Recorded event.

SCORE: 1

(d) Real-time.

Figure 6.11: State of the game before and after decreasing the jump height parameter.

1. A developer writes code in a programming language.

2. The (valid) code is compiled to instructions for the specific machine.

3. The instructions are loaded into memory, and storage is allocated for execution.

4. The program is executed, which performs operations on the program and its state.

5. The developer modifies the code of the program, concurrently with execution.

6. The modified code is compiled to new instructions.

7. The program merges its old instructions and state with the new instructions.

8. The program executes the new instructions.

With the exception of the 7th item, these steps are identical to the workflow of normal
programming. Normally, however, the new instructions are only executed in a new invo-
cation of the program. The merge operation, therefore, is the only new operation in live
programming (from a functional point of view). The merge operation alters a running
program to incorporate changes unknown at compilation time, by merging the updated set
of instructions with the old state of the running program. Specifically, new instructions
that do not have an execution context are merged with old instructions and their associated
execution state. As data is also merged, such as the value of variables, information from the
old program must be combined with the new instructions.

Data merging is intentionally left vague, as many approaches exist. Three categories were
proposed [194], depending on how much data is copied: no live programming, recorded
event, and real-time. We illustrate all three with a game example, similar to the ElmScript
example. The game is a simple platform game, where the jump height of the character
is updated during execution. The game’s current state is shown in Figure 6.11a, where
the character jumped onto the platform and, in the meantime, collected one coin. If the
character were to jump, the coin is collected and the score is increased to 2.

No live programming is the most basic, where no information is passed between executions.
Upon recompilation, the currently running application is terminated and restarted afresh.
This approach does not implement live programming at all, and can easily be replicated
without any modification to the programming language itself. All that is required is an
automatic restart of the application after a change is detected. In the game example, the
character is respawned at the beginning and the score is initialized to zero. This is shown



6.2. LIVE MODELLING 167

in Figure 6.11b, where the character has respawned and all coins have been reset as well.
From this point onwards, the jump height is reduced and the character will be unable to
jump on the platform. In conclusion, no state is retained.

Recorded event takes over the history of all inputs sent to the old running application.
The new program is then executed with these simulated events, making it seem as if the
inputs sent to the old program were sent to the new program. This approach is used in
programming languages such as ElmScript [74]. For performance reasons, the program
is often not completely re-executed, but only dependent functions are re-evaluated. In the
game example, our character might switch location and score, depending on what these
values would be if the exact same inputs were given in the new application. When the jump
height parameter is decreased, we suddenly find the character below the platform, instead of
on top of it. This is shown in Figure 6.11c, where we see the character below the platform:
the jump we did before did not reach the same height, which made the character unable to
reach the platform. Subsequent actions, such as moving to the right, were still replicated,
but in a different context: below instead of on top of the platform. In conclusion, the input
history part of the state is retained.

Real-time takes over the complete history of the old running program, but merges in new
instructions to be used in the future. The new program is effectively a rewritten version of
the old program, which just continues computation. This approach is used in programming
languages such as Smalltalk [123], and is often also termed fix and continue. In the game
example, our character will be at the same location and have the same score as before,
but changes will take effect from that point onwards. When the jump height parameter is
decreased, we find it impossible to jump as high as we could before, though our current
location remains unchanged. This is shown in Figure 6.11d, where we see no immediate
change. From this point onwards, however, we are unable to get the coin right above
us, as the character can no longer jump that high. In conclusion, the complete state is
retained.

Executable Modelling

Modelling has historically mostly been used in the form of documentation of a separate
coded application. Recently, however, executable modelling has gained popularity, where
the model itself becomes the final application, without additional coding effort. In this case,
the model is not necessarily used as documentation or to generate skeleton code, but its
execution becomes detached from programming. In essence, models have gained semantics,
for which two main categories exist, as presented before: denotational and operational
semantics.

Operational semantics has to store extra execution data, and therefore often makes the dis-
tinction between a design and runtime metamodel. The design metamodel is the metamodel
that is used by the designer when creating the model. It has all the necessary constructs
for design, but is not concerned with the execution. For example, in Finite State Automata
(FSAs), a State only has a name and initial attribute. The runtime metamodel, however,
has additional information required for execution. For example, the state now still has its
name and initial attribute, but additionally has a current attribute. This attribute stores a
boolean containing whether or not this is the current state of the execution. While this
information is required for the execution, as it needs to be stored somewhere, it is invisible
to the designer.



168 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

Due to the distinction between these two types of metamodels, multiple models are actually
required for operational semantics: the design model is first translated to a runtime model,
thereby initializing it (e.g., setting the current attribute to the initial attribute). The actual
operational semantics is subsequently executed on this intermediate runtime model.

6.2.3 Running Examples

We will use several running examples throughout this section. For all formalisms, we
present a simple model on which we use live modelling. Modelling languages can have
widely varying semantics, including non-determinism, event-driven behaviour, timing,
etc. While implementing live modelling techniques for each of these categories will be
different, one essential difference that has an effect on live modelling is the types of changes
that can be made. We identify three types of languages: two that gain semantics through
operational semantics (i.e., they manage the state themselves), with support for breaking
and non-breaking changes, and one that gains semantics through denotational semantics
(i.e., they delegate execution and states to another formalism). The distinction between
breaking and non-breaking changes stems from the language evolution community [197],
where changes to the metamodel can be considered to break the instances. With breaking
changes, the instances have to be adapted, for example when adding a new mandatory
attribute to a class. This can be either resolvable (e.g., when the attribute has a default
value) or non-resolvable (e.g., when the attribute has no default value). With non-breaking
changes, the instances do not have to be adapted, for example when adding an optional
attribute to a class.

With operational semantics and breaking changes, conforming changes on the design
model might result in non-conforming changes on the runtime model. For example, in live
programming, the currently executing line of code can be removed. In this case, the change
in the design model (source code) is a valid piece of program code, but when this same
change is mapped to the runtime model, the current instruction pointer is also removed,
making the runtime model invalid. To solve inconsistent states after such a change, a new
line of code must be selected as the currently executing line of code, which can often not be
done automatically. Note that it is not possible to switch the instruction pointer to a different
line of code, as we do not have access to the state values themselves. As a representative
example of a formalism with breaking changes, we choose Finite State Automata.

With operational semantics and non-breaking changes, conforming changes on the design
model always result in conforming changes on the runtime model. For example, in live
programming, variables can be added or removed, and their values cannot be changed.
In this case, the change in the design model (source code) is a valid piece of program
code, and when the same changes are mapped to the runtime model, the runtime model
stays valid. Note that it is not possible to change the values of variables themselves, as we
only have access to the source code, not to the execution information. As a representative
example of a formalism with non-breaking changes, we choose Discrete Time Causal Block
Diagrams.

With denotational semantics, execution is delegated to another formalism. For example, in
live programming, the codebase is first translated to another programming language, for
which live programming is supported. To solve the inconsistent state, the sanitization pro-
cess executes at the target language level, thereby reusing existing sanitization approaches.



6.2. LIVE MODELLING 169

idle armed detected

Arm

Disable

PersonDetected /

SoundAlarm

WrongCode

CorrectCode /

DisableAlarm

Figure 6.12: Example FSA of a home security alarm system.

In the end, however, the modeller is likely only an expert in the source language, and
might even be unaware of the existence of a target language. As a representative example
of a formalism with denotational semantics, we choose Continuous Time Causal Block
Diagrams, which we map to Discrete Time Causal Block Diagrams through discretization
and optimization.

For readability, we present our approach using these three different formalisms, all intro-
duced in Chapter 2. Many languages support different types of changes, such as some that
are breaking (e.g., the executing line of code) and others that are non-breaking (e.g., variable
values). Therefore, a composite merge rule is often required, which handles all aspects
simultaneously. We explain all used formalisms next, along with an example model.

These three types of languages are exhaustive: a change is either breaking (i.e., requires
changes) or non-breaking (i.e., doesn’t require changes). For breaking changes, two
resolution methods exist, both of which are handled. Denotational semantics does not
consider the difference between breaking and non-breaking changes, as it merely relies on
the underlying semantics for this. As such, denotational semantics is only considered in
combination with one type of changes.

Finite State Automata

The Finite State Automata (FSA) language [143] is a modelling language used to model
reactive systems with discrete state, and was previously mentioned in the Background
chapter. Our running example is the same, specifically that of a home security alarm system,
shown in Figure 6.12.

The FSA language is an example of a language with potential breaking changes: the only
state of the model is the current state, which is explicitly present and can thus be removed.
If the user deletes the current state, execution can only resume when another state is chosen
as the current state. This can be resolved either manually (breaking, non-resolvable) or
automatically (breaking, resolvable).

Discrete Time Causal-Block Diagrams

The Discrete Time Causal Block Diagrams (DTCBD) language [61] is a modelling language
used to model a complex system of equations, and was previously mentioned in the
Background chapter. Our running example is the same, specifically that of the equation
y = x − y, shown in Figure 6.13a. The equivalent set of equations is shown next to
it.



170 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

x
1

D
IC

+

-

z

y

(a) Example DTCBD, containing an algebraic
loop.


y(t) = x(t)− y(t)

z(t) =

{
x(t) if t = 0

y(t− 1) if t > 0

(b) The equations represented by the example
DTCBD model.

Figure 6.13: Example DTCBD.

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

10

1

1

20

(a) Example CTCBD model.

{
v(t) =

∫ t

0
m·g−k·y(t)

m
dt

y(t) =
∫ t

0
v(t)dt

(b) The equations represented by the example
CTCBD model.

Figure 6.14: Example CTCBD.

The DTCBD language is an example of a language with exclusively non-breaking changes:
delay blocks have a memory of their previous iteration, but this is no longer necessary when
the block is deleted. The runtime state of the model is an aggregation of the memory values,
which the user cannot manipulate directly. When a delay block is added, the state needs to
be updated accordingly by initializing a new state variable. Similarly, when a delay block
is removed, part of the state is removed. It is impossible for a conforming design model to
result in a non-conforming runtime model.

Continuous Time Causal-Block Diagrams

The Continuous Time Causal Block Diagrams (CTCBD) language [61] is an extension to
DTCBDs, introducing two continuous blocks: an integrator and derivator. Our running
example is the same, specifically that of a mass suspended on a string, shown in Figure 6.14a.
The equivalent set of equations is shown next to it.

The CTCBD language is an example of a language with denotational semantics: to execute
the model, it is first translated to an equivalent DTCBD (with respect to some properties),
which is then executed instead. It does not matter whether the target language has breaking
or non-breaking changes, or has denotational semantics itself, as live modelling is assumed
to be supported for that language already. As such, we build on top of the live modelling
functionality that was developed for our other running example.

While we acknowledge that DTCBDs and CTCDBDs look similar, there is a non-trivial
n-to-n mapping between both languages due to the discretization and optimization. Even



6.2. LIVE MODELLING 171

though many concepts can be reused between the two, the mapping exhibits most of the
complexities normally associated with traceability links in denotational semantics.

6.2.4 Approach
We start our approach to live modelling by deconstructing the current process for live
programming schematically, and then generalize the concepts and processes to modelling.
This results in a general framework for live modelling, that can be applied to any (domain-
specific) executable modelling language. Programming languages also fit this framework,
as they can themselves be seen as an executable modelling language.

Deconstructing Live Programming

The first step in our work is the deconstruction of the live programming process. This
process consists of artefacts (i.e., files or structures in memory) and modifications (i.e.,
operations on these artefacts). An overview is shown in Figure 6.15.

Artefacts We distinguish three artefacts: code, instructions, and the running program.

The code is the textual notation that represents a program, created by the developer. Code
is often persisted as a text file. It is the only artefact programmers should edit; they should
not edit any subsequent (automatically generated) artefacts. An example is a C++ source
code file.

The instructions are the result of compiling the code. Consisting of a set of instructions
and data, which can be interpreted by the machine. Execution-time concepts are not yet
considered: variables have no value, nor is there a currently executing line of code. The
compiled program is only an “intermediate” form: it is an optimized version of the original
code, and is easier to read for a computer. As part of the compilation process, the program
is instrumented with extra information, such as mapping variables to registers. An example
is a compiled C++ program in ELF format. It is important to note that these instructions
are semantically equivalent to the original code.

The running program is the actual program loaded in memory, including its state. It is
executed by the machine and is very similar to the compiled program, but includes runtime
information (the state). Multiple versions of the same program can execute at the same time
without sharing state (i.e., memory): each program runs independently of the others. Even
when the instructions are changed (i.e., in self-modifying code), these changes only take
effect on the running instance. Thus, program execution can be defined as the continuous
updating of the artefact itself. An example is the memory used for executing an ELF file,
encompassing both the instructions and the execution data.

Operations We distinguish five operations between these artefacts: compilation, initial-
ization, execution, modification, and merging.

Compilation (code to instructions) transforms a human-readable piece of code to a machine-
readable representation. This process involves steps such as making implementation deci-
sions and register allocation. The generated machine code remains semantically equivalent
to the original code.



172 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

code

C++

code'

m
o
d
ify

instructions

instructions'

ELF

compile

compile

init

merge

running

program

Running

Code
exec

exec

running

program'

Figure 6.15: Diagrammatic overview of live programming. Full lines represent operations,
dotted lines represent typing relations.

Initialization (instructions to running program) loads a compiled program into memory and
initializes its state at the start of execution. Apart from initializing the state, the machine
code is copied to memory.

Execution (modification of running program) modifies the program by changing the data,
or by changing the instructions (self-modifying programs). Execution typically only alters
the state of the variables contained in the program.

Modification (modification of code) represents the changes a user makes to the original
source code artefact. Arbitrary changes are supported, as long as the result is still a valid
instance of the original language (i.e., it can be compiled).

Merging (instructions and running program to a running program) merges the state of a
running program with an updated set of instructions. The merge operation is specific to
live programming: the currently executed program is merged with the updated instructions.
Afterwards, the “new” program resumes execution where the “old” program left off, thereby
replacing it. This can be seen as a generalization of the initialization operation: as part of
the merge, the state is initialized for new instructions, while it is modified if instructions
are removed or updated. We therefore consider initialization a merge with an “empty
program”.

The live programming process is shown in Figure 6.15, where we explicitly mention
the type of artefacts for a specific scenario. That way, the signature of the operations
becomes apparent. While live programming environments often offer additional features
for performance reasons, such as incremental compilation, these are not functionally
required.

Transposition to Modelling

Taking this diagrammatic process, we generalize to the domain of modelling. We port these
concepts to the modelling domain: instead of using programming languages and execution
on actual machines, we make it platform-independent. Whereas we used a language such
as C++ before, we now assume the artefacts as instances of an executable language. Our
approach is a generalization: it can also be applied to programming languages, since they
can be seen as executable modelling languages. Their syntax is defined in the language’s
grammar (cf. metamodel), while their semantics is defined by their mapping onto machine
code.

Artefacts First, we transpose the artefacts, which gives us three kinds of models: the
design model (code), partial runtime model (instructions), and full runtime model (running



6.2. LIVE MODELLING 173

X

X

+

-

v

y

k
1

mg
10

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

Figure 6.16: The partial runtime model of the example CTCBD, as an instance of the
DTCBD language.

program).

The Design Model is the equivalent of the code. Similar to code, it is the only artefact that
the user can edit, and thus also the one that is seen as the “master” copy of the program.
Our previous examples of an FSA, DTCBD, and CTCBD model, presented in Figure 6.12,
Figure 6.13a, and Figure 6.14a, respectively, are expressed in the design language.

The Partial Runtime Model is the equivalent of the instructions. Similar to instructions, it
has the same meaning as the design model, though it might be pre-processed. If operational
semantics is defined for this formalism directly, it can be seen as a retyping operation. In
general, however, the structure of both languages might vary significantly (as was the case
with C++ and ELF). In the FSA and DTCBD languages, the partial runtime models are
equivalent to the design models, since both languages have operational semantics. In the
CTCBD language, the partial runtime model differs, as it is a model in the target language:
DTCBDs. Figure 6.16 presents a discretized version of the original CTCBD model, in the
DTCBD language.

The (Full) Runtime Model is the equivalent of the running program. Similar to the running
program, the full runtime model is a copy of the partial runtime model, extended with
additional elements representing the execution state. In Figure 6.17, the full runtime models
of the running examples are shown.

For FSAs (Figure 6.17a), a pointer to the current state is added. In the figure, the model is
currently in the detected state. For execution, the model is updated by changing the current
state based on the input events received from the environment.

For DTCBDs (Figure 6.17b), more runtime information is added, as they have a notion
of time, represented by the number of iterations. The time is incremented each time an
iteration is executed. Each iteration, the signal values are (re)computed based on the new
input values. For most blocks, their output signal value only depends on their current input
values and hence they are stateless. One exception is the delay block, whose output value
depends on its input value in the previous iteration. A mem runtime variable keeps track of
this value, which must be initialized as well.

For CTCBDs (Figure 6.17c), the situation is identical to DTCBDs now, as the model was



174 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /

DisableAlarm
current

PersonDetected /

SoundAlarm

(a) The full runtime model of the example FSA,
during execution.

x
1

D
IC

+

-

z

y

mem=1

time=5

(b) The full runtime model of the example
DTCBD, during execution.

X

X

+

-

v

y

k
1

mg
10

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

time=5

mem=0 mem=0 mem=0 mem=0

(c) The full runtime model of the example CTCBD, during execution.

Figure 6.17: The full runtime models of the examples.

effectively translated to the DTCBD domain.

Operations Second, we transpose the various operations on these artefacts: retyping
(compilation), simulation (execution), modification (modification), and sanitization (initial-
ization and merging).

The Retype operation is the equivalent of the compile operation. Similar to compilation, it
creates a semantically equivalent copy of a model, while retyping it to a runtime model.
It does not necessarily have to be a trivial retyping, as potentially the design and partial
runtime model have a slightly different structure (e.g., flattening hierarchy). Retyping is
thus also responsible for making this translation. As explained before, the partial runtime
models for both the FSA and DTCBD language do not contain additional information. The
retyping operation is therefore trivial in this case. For CTCBDs, the retyping actually casts
the model to a language for which semantics exists. This operation involves discretization
(one CTCBD element is mapped to multiple DTCBD elements) and optimization (multiple
CTCBD elements are mapped to one DTCBD element). After this discretization, however,
the case becomes identical to DTCBDs for the remainder of the live modelling process.



6.2. LIVE MODELLING 175

In all cases, traceability links are created between the various elements to help in future
operations. For example, in the FSA, the design state is linked to the equivalent partial
runtime state, such that on subsequent operations, it is known that this state has already
been converted before, and therefore does not need to be recreated again.

The Simulation operation is the equivalent of the execution operation. Simulation computes
the next state of the full runtime model and updates it in-place. For the FSA language, the
next state of the model is computed by processing an event from the environment, and
executing an enabled transition by changing the current state and (optionally) raising output
events to the environment. For the DTCBD and CTCBD languages, there is no external
input or output. The next state of the model is computed by, for each block, computing the
output signal value based on its input values. This requires detecting loops and solving
them if they represent a set of linear equations. For delay blocks, the output value is equal
to its value in memory (or the initial condition at the first iteration when the memory value
has not been set yet). The memory value is overwritten by the current input value of the
delay block. At the end of computing the next value of all blocks’ output signal values, the
iteration counter is incremented. As we are operating on models, and not on generated code,
we do not need to consider the technical aspects of replacing executing code: the model is
updated in-place and the simulation algorithm picks up these changes in the next step. Note,
however, that the simulation algorithm does not take care of initialization, as is usually
the case. Indeed, normally the first step of simulation is to initialize variables, which is
now unnecessary: all information is stored and read out from the model itself. Some parts
of the simulation algorithm still need to be done, which are not related to initialization of
the model, but initialization of the simulation algorithm, such as topological sorting for
DTCBDs.

The Modification operation is the equivalent of the modification operation in programming.
Similar to modification in the programming domain, users can only modify the design
model. Since all other artefacts are automatically generated, the design model is the only
artefact they are familiar with. While the user never edits the partial or full runtime models
directly, the design model can be freely modified. As usual, Create-Read-Update-Delete
(CRUD) operations are supported on the model. This boils down to Creating new elements
and attributes, Updating the values of attributes, and Deleting elements and attributes. Note
that reading does not modify the model, and is therefore ignored.

To highlight the various types of changes, each language has a different type of change. For
the FSA language, users can change the triggers on transitions, remove transitions, create
new states, and so on. A modified FSA design model is shown in Figure 6.18a, where
the detected state is removed (Delete). For the DTCBD language, users can instantiate
new blocks, delete existing blocks, add or remove dependencies, and so on. A modified
DTCBD design model is shown in Figure 6.19a, where the value of y(t) is multiplied
by two, thereby changing the algebraic loop (Create). For the CTCBD language, users
can instantiate new blocks (including the integrator and derivator), delete existing blocks,
add or remove dependencies, and so on. A modified CTCBD design model is shown in
Figure 6.20, where the gravitational constant is altered (Update). For all languages, the
design models must conform after the modifications. Note that different types of operations
were applied for each formalism: removing a structural element in FSAs, creating several
structural elements in DTCBDs, and changing a parameter in CTCBDs. This highlights the
various types of operations that can be done on the design model, all of which are reflected



176 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

in the running simulation.

The Sanitization operation is the equivalent of the merge operation. While it is indeed
a merge operation, it was renamed to sanitization to prevent confusion with the existing
term model merging [54]. The operation creates a full runtime model from a (new) partial
runtime model and an (old) full runtime model. As the sanitization is domain-specific, it is
difficult to make general claims about this operation: it is whatever the language engineer
wants it to be. Nonetheless, the sanitization function can be sure that both input models will
conform to their metamodel (which the language engineer can define), and must ensure its
output conforms to the full runtime metamodel. Sanitization includes initialization (where
the runtime state is empty) and the live modelling “merge”, where the runtime state is taken
into account. As discussed previously, sanitization is fundamental to live modelling support,
and as such, it is discussed in detail next. As was the case with the retyping operation,
sanitization makes use of traceability links, linking elements from the partial runtime to the
full runtime. Traceability links are used to correctly migrate the state of the full runtime
model to the right elements in the partial runtime model. For example, in the FSA, a
state in the partial runtime model without any traceability link is considered to be a new
element, while a state in the full runtime model without a traceability link is considered to
be removed, possibly triggering a problematic situation when this was the current state of
the simulation.

Sanitization The sanitization operation is largely dependent on the types of changes to be
merged (i.e., breaking or non-breaking), but remains a language-specific operation. There-
fore, a manually defined version needs to be created for each new language. Nonetheless,
our decomposition has shown that this is the only operation that needs to be added, in order
to provide live modelling for that formalism. Depending on how the sanitization operation
is implemented, any of the three types of live modelling (i.e., none, recorded event, or
realtime) can be implemented. We leave open the medium in which this operation is
expressed (e.g., procedurally using code or declaratively using model transformations). The
presented code snippets therefore do not restrict sanitization to a procedural approach. We
present the sanitization operations for both types of state, using our running example: the
FSA, DTCBD, and CTCBD formalisms. For all three, we present realtime live modelling.
Note that, similar to live programming, sanitization can only happen when the state is
consistent (i.e., inbetween two execution steps).

Breaking Changes When breaking changes are possible, the runtime model might have
to be made conforming to its metamodel again. For example, when users remove the current
state in the design model, the equivalent state in the runtime model also has to be removed,
thereby violating the constraint that the runtime model has exactly one current state. In
that case, a new state of the updated running system must be defined. Changes to any
other aspect of the design model are irrelevant to the running system, and are just taken
over.

Resolving this breaking change is the core task of the sanitization operation. There are
three options: reset the current state to the initial state (automated, so resolvable), prompt
the user for a new state (manual, so non-resolvable), or disallow the change completely
(disallow breaking changes). For the new design model in Figure 6.18a and the old full
runtime model in Figure 6.17a, the first two options are presented. Figure 6.18b shows



6.2. LIVE MODELLING 177

idle

armed

Arm

Disable

(a) Modified design model.

idle

armed

Arm

Disable

current

(b) Automatic resolution.

idle

armed

Arm

Disable

current

(c) Manual resolution to
“armed” state.

Figure 6.18: Sanitization in FSAs.

automatic resolution where, in this case, the system chooses the default state (the “idle”
state) as the new current state. Figure 6.18c shows manual resolution, where the user
chooses the “armed” state as the new current state. Figure 6 shows the pseudocode of the
sanitize operation for FSAs.

ALGORITHM 6: The FSA sanitize operation.
if isInitialized() then

currState← getCurrentState(M old
F )

if not currState ∈M new
P then

if automaticResolution then
currState← getInitialState(M new

P )
else

if disallowChange then
raise Exception

else
currState← userChoice(M new

P )
end if

end if
end if

else
currState← initializeState(M new

P )
end if

Changes resulting in an undefined current state could also be explicitly disallowed. We
did not pursue the direction of disallowing design model changes, as we explicitly want all
modifications to be possible.

Non-Breaking Changes For non-breaking changes, any change the user makes always
reflects on a conforming runtime model. In contrast to breaking changes, where resolu-
tion is required, non-breaking changes don’t require significant changes to the runtime
model.

In our example DTCBD language, only operations on the integrator, derivator, and delay
blocks have any influence. Since each block and connection has its own signal and memory,



178 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

x
1

D
IC

+

-

z

y

x 2
2

(a) New design model.

x
1

D
IC

+

-

z

y

x 2
2

mem=1

time=5

(b) Sanitized runtime model.

Figure 6.19: Sanitization in DTCBDs.

removing a block or connection only affects that specific signal. In further simulation
steps, however, the change will of course have its effects on other elements as well, as it
propagates through the system. It is possible, however, to add new parts to the state (i.e.,
add new blocks or connections) or remove parts of the state.

ALGORITHM 7: The DTCBD sanitize operation.
for all block ∈M new

P do
if block ∈M old

F then
oldSignal← getSignal(M old

F , block)
setSignal(Mnew

P , block, oldSignal)
else

initializeSignal(M new
P , block)

end if
end for
if isInitialized() then

iterations← getNumberOfIterations(Mold
F )

setNumberOfIterations(M new
P , iterations)

else
initializeNumberOfIterations(M new

P )
end if

When sanitizing, we take the structure from the partial runtime model, which we augment
with the runtime data from the full runtime model. In the case of DTCBDs, the runtime
information consists of (1) the current simulation time; and (2) the memory of delay blocks,
derivators, and integrators. Blocks that were not present in the full runtime model are
initialized as usual, since they are new. Blocks that were present, however, have their state
copied from the full runtime model. The pseudocode of the sanitize operation for DTCBDs
is shown in Algorithm 7.

An example of sanitization is shown in Figure 6.19. In this figure, we see the new design
model in Figure 6.19a, and the resulting full runtime model in Figure 6.19b. The full
runtime model consists of the structure of the partial runtime model, combined with the
values of the old full runtime model. In this case, the value of the t variable (representing
the current iteration of the simulation), as well as the memory value of the delay block, are
copied.



6.2. LIVE MODELLING 179

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

30

1

1

20

Figure 6.20: New design model for CTCBDs.

Denotational Semantics For denotational semantics, the sanitization is done at the level
of the target language, and will therefore be any of the previously mentioned approaches.
Sanitization might require traceability information to be present. This information links
the various models to be merged together, as indeed the source and target partial runtime
models can vary significantly. Using traceability links, elements in different languages can
be connected to their equivalent counterparts. Some elements, such as the integrator in
CTCBDs, will have traceability links to multiple elements in the DTCBD partial runtime
model, as it was expanded (1-to-n mapping). Other elements, such as a constant block in
CTCBDs, might have traceability links to a shared element in the DTCBD partial runtime
model, as it was partially optimized away (n-to-1 mapping).

The sanitization process is completely identical to that of operational semantics in terms
of traceability information: information is stored during retyping and sanitization, and is
subsequently used in the next sanitization phase to identify equivalent elements. The only
difference is that there is no longer a 1-to-1 mapping, but an n-to-n mapping. Nonetheless,
during all phases of live modelling, traceability links are still created. Using this information,
it is still possible to find out which design element(s) was the source of the current element
in the full runtime model. As for each element in the full runtime model the design element
is known, it is possible to find out which elements are identical and should have their state
copied.

No new sanitize operation is presented, as the DTCBD sanitization operation is reused.

Live Modelling Process

An overview of the approach, for each case, is shown in Figure 6.21 for FSAs, in Figure 6.22
for DTCBDs, and in Figure 6.23 for CTCBDs.

More generally, Figure 6.24 shows an FTG+PM [186] model describing both the different
formalisms and processes of live modelling for any executable modelling language. The left
side shows the Formalism Transformation Graph (FTG), describing the different formalisms
and the transformations between them. The right side shows the Process Model (PM),
describing the sequence of operations done by the user and the data dependencies. It
includes the artefacts, how they are related, and the process describing the (automatic or
manual) operations. The sanitize operation has a dual colour: it is mostly automatic, though
it can be manual for non-resolvable breaking changes, where the user is prompted. In the
PM, simulation and modification run concurrently: modifications can be made throughout



180 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /
DisableAlarm

current

PersonDetected /
SoundAlarm

idle armed

Arm

Disable

Design 1

Runtime 2Design 2

Runtime 1

modify

retype

merge

simulate

retype

simulate

merge

Runtime 0

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /
DisableAlarm

PersonDetected /
SoundAlarm

idle armed

Arm

Disable

current

Partial Runtime 1

idle armed

detected

Arm

Disable

WrongCode

CorrectCode /
DisableAlarm

PersonDetected /
SoundAlarm

Partial Runtime 2

idle armed

Arm

Disable

Figure 6.21: Overview of our approach applied to an FSA mode, including traceability
links.

modify

retype

merge

simulate

retype

simulate

merge

Runtime 0

Design 1

x
1

D
IC

+

-

z

y

Design 2

x
1

D
IC

+

-

z

y

x 2
2

Runtime 2

x
1

D
IC

+

-

z

y

x 2
2

mem=1

time=5

Runtime 1

x
1

D
IC

+

-

z

y

mem=1

time=5

Partial Runtime 1

x
1

D
IC

+

-

z

y

Partial Runtime 2

x
1

D
IC

+

-

z

y

x 2
2

Figure 6.22: Overview of our approach applied to a DTCBD model, including traceability
links.



6.2. LIVE MODELLING 181

modify

retype

merge

simulate

retype

simulate

merge

Runtime 0

Runtime 1

X

X

+

-

v

y

k
1

mg
10

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

time=0

mem=0 mem=0 mem=0 mem=0

Runtime 2

X

X

+

-

v

y

k
1

mg
30

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

time=5

mem=-6 mem=-5 mem=-3 mem=17

Design 2

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

30

1

1

20

Design 1

y0

v0

k X

m X ∫ ∫1
x

g X +

-

v y

1

10

1

1

20

X

X

+

-

v

y

k
1

mg
10

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

Partial Runtime 1

X

X

+

-

v

y

k
1

mg
30

1/m
1

0
0

t
0.1

v0
1

y0
1

D D

+X

D D

+X

IC IC IC IC

Partial Runtime 2

Figure 6.23: Overview of our approach applied to a CTCBD model. Only some interesting
traceability links are shown.

language
manual operation
automatic operation

model artefact
manual activity
automatic activity

ModelSystem

Partial
Runtime

Design

Full
Runtime

Retype

Sanitize

Simulate

M
o
d
ify

D
e
sig

n

:ModelSystem

:Design

:PartialRuntime

:Retype

:FullRuntime

:ModifyModel

:Sanitize

φ

:Retype

:PartialRuntime

:Sanitize

:Simulate

:Restart

FTG PM

Figure 6.24: Overview of our approach, as an FTG+PM model.

simulation. This is typical for live modelling, in contrast to the mostly linear development
process of a single model in ordinary modelling.

Relation to Multi-Paradigm Modelling

Our approach can be considered a Multi-Paradigm Modelling (MPM) approach to live
modelling for several reasons.



182 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

On the one hand, this approach builds on MPM, as it requires all techniques that are present
in MPM: language engineering (e.g., for domain-specific modelling), activities (e.g., for
model transformations), and processes (e.g., for enactment). Language engineering is
required for the various languages that are used by the approach: design metamodel, partial
runtime metamodel, and the full runtime metamodel. All these languages must be created
within the tool and should have support for maintaining them. Activities are required
to relate the various languages and models together, thereby automatically applying the
approach. Activities can be implemented in different ways, such as through declarative
model transformations or a procedural action language, and are executed to translate
between the various models. Processes are required to structure the approach, thereby
preventing it from being ad-hoc as the majority of other approaches to liveness. With
support for enactment, it even becomes possible to automatically perform the complete
live modelling approach. In conclusion, all relevant aspects of the approach are modelled
explicitly, as proposed by MPM.

On the other hand, this approach is desirable in an MPM context, as MPM requires the use of
the most appropriate formalism(s) for a problem. The most appropriate formalism, however,
is likely to be domain-specific and have a rather limited application domain. As such, the
number of users of these languages is small, making it hard to justify the effort ordinarily
required to make languages live. With the proposed generic approach, languages can more
easily be made live with the addition of a “sanitize” operation, significantly lowering the
threshold to live modelling and increasing the usability of the language. Increasing the
usability of a formalims naturally makes the language more appropriate for its use, thereby
strengthening the MPM approach.

6.2.5 Evaluation

To assess the feasibility of our approach, we implemented live modelling for the three
running examples. Our prototype consists of a single visual modelling and simulation front-
end, in which multiple languages can be loaded, including FSAs, DTCBDs, and CTCBDs.
This front-end is unaware of live modelling. All operations are defined in the Model-
verse [304], our Multi-Paradigm Modelling (MPM) tool. The Modelverse implements all
aspects of MPM [316], making it possible to use all aspects of language engineering, model
transformations, and process modelling, as required by our approach.

In our prototype tool, users start the live modelling process relevant to the language they
want to use. The process can be parameterized with an input model, which is the initial
model. If no input model is provided, users start from an empty model. Independent of
the initial model, simulation is always started anew, as only the design models are stored.
Enactment completely resembles the usual modelling interface, but instead of only having
a modelling window, a simulation window is now also present. This simulation window is
merely an external program that visualizes the simulation results obtained.

Even during modelling, simulation is progressing, and users will see that the simulation
window is updated in real-time. Changes made by the user are not immediately committed
to the actual design model, as users might want to group a set of operations together into a
transaction. As soon as users are satisfied with the design model, and wish to propagate
the changes to the running simulation, they commit the design model. In our prototype
implementation, committing can be done by closing the modelling window. When the



6.2. LIVE MODELLING 183

window is closed, the manual “edit” activity is finished, and the process enactment continues
by stopping the current execution and performing the required translations. Once these are
completed, simulation is resumed and a new modelling window is opened with the current
version of the design model. Users will immediately see that their simulation is resumed,
but now taking into account the new model.

For all the three examples presented below, the exact same tool is used, with the exact
same (parameterized) FTG+PM model. Apart from the usual operations that have to be
implemented for any executable modelling language (i.e., runtime metamodels, operational
semantics, denotational semantics), only the sanitize operation is new, and had to be defined
for each language individually. As for the visual interfaces, these are untouched when
implementing live modelling, as everything is based on process enactment.

Finite State Automata

The implementation of our FSA live modelling environment is shown in Figure 6.25. To the
left, the modelling window is shown, which contains a visual representation of the design
model. To the right, the simulation window is shown, which is continuously updated with
results from the running simulation. The trace shows the current state throughout time.
Although FSAs are untimed, input events can be raised by the user through the simulation
interface. The state of the system is constant in between such events; the time plotted on
the x-axis is wall-clock time. The FSA model itself is oblivious of the current time.

During exection, the current state (“idle”) is removed and the new initial state is set to
“armed”. Upon committing this change, the model and trace is updated as shown in
Figure 6.26. It is shown that, upon making that change, sanitization sets the new current
state to the new initial state, which is “armed” in this case. Note that there will always be a
single initial state, as this is part of the constraints imposed by the metamodel. The history
of the simulation is left as-is, since the history is not rewritten with realtime live modelling.
Nonetheless, the current state has no effect on the result of sanitization.

Discrete Time Causal Block Diagrams

The implementation of our DTCBD live modelling environment is shown in Figure 6.27. It
is similar to the FSA live modelling environment, as they reuse a lot from the Modelverse
and our generic approach. Actually, the only difference related to live modelling is the
sanitize operation. Of course, the formalisms also differ, just like the simulation viewer,
though these are all independent of live modelling, and would be required anyway, even
without live modelling. In the simulation view, probed signals are plotted. It is possible
for signals to appear or disappear throughout simulation, when a probe block is added or
removed during simulation. This is a design consideration of the simulation viewer if it
wants to support live modelling.

During execution, the algebraic loop is resolved and sets both y and z to 1
2 . After some time,

the algebraic loop in the DTCBD model is extended with an additional multiplication block
and constant 2. The value for z now becomes the output of the addition block, while the
value for y becomes the result of the multiplication block. After all elements are connected
and changes are committed, the trace is updated, as shown in Figure 6.28. Again, the
algebraic loop is solved transparently to the user, resulting in a y value of 2

3 and a z value
of 1

3 .



184 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

Figure 6.25: Live modelling for FSAs, before change.

Removed current state

New initial state

Change current state

Figure 6.26: Live modelling for FSAs, after removing current state and setting new initial
state.

Continuous Time Causal Block Diagrams

The implementation of our CTCBD live modelling environment is shown in Figure 6.29.
It is identical to the DTCBD live modelling environment, but now we have access to
the derivator and integrator blocks. To the user, it is indistinguishable whether this live
modelling functionality was provided by using an operational or denotational semantics
approach. Similarly, the simulation viewer from DTCBDs is reused.

Up to time 60, the simulation executes the model shown in Figure 6.29, showing the results
on the trace in Figure 6.30. We notice the harmonic oscillator behaviour that is expected of
such a system. At time 60, however, the CTCBD model is altered by changing the value of
constant g from 10 to 30, effectively being a sudden increase in gravitational force. This
has an immediate effect on the simulation trace, as shown in Figure 6.30 after time 60:
instead of having a decreasing velocity, the velocity starts increasing again. Results stay
continuous, though a difference in behaviour is clearly observed at the point in simulation
where the change was made.

Evaluation

Given that our generic tool could be used for three different domain-specific languages,
while all using the same (parameterized) FTG+PM model, we believe our approach to



6.2. LIVE MODELLING 185

Figure 6.27: Live modelling for DTCBDs, before change.

New elements

Updated values

Figure 6.28: Live modelling for DTCBDs, after adding and connecting the multiplication
block.

Figure 6.29: Implementation of live modelling for CTCBDs.



186 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

Figure 6.30: Simulation trace, where the constant “g” is changed at around time 63.

be applicable to a wide variety of modelling languages. Indeed, our structured approach
required no modification for these three types of semantics, making us believe that it can be
applied for other formalisms as well. We can therefore assume that our approach provides
structure to the currently ad-hoc process of making a language live.

Sanitization was the only activity that was further required, but its logic was previously
described. The goal of the sanitization function is conceptually clear: combine the currently
executing model (with state information) with an uninitialized runtime model. In the limit,
this sanitization function can be seen as an advanced initialization function, which can take
an existing simulation model as input. We can therefore assume that our approach can make
existing languages live with little additional work for the language engineer.

6.2.6 Related Work
Our contribution provides a language-neutral overview of liveness, thus enabling liveness
for (domain-specific) executable modelling languages. Two categories of related work exist:
live programming and (live) executable modelling.

In the live programming domain, the concept of liveness is well-studied. One of the most
important distinctions between different approaches is how they handle time: a distinction
is made between real-time and recorded event [194]. In real-time mode, the past is left
unaltered, and only future executions of the code are influenced. This is often termed fix
and continue, as implemented by Lisp [249], Smalltalk [123], Erlang [18], and SELF [283].
In recorded event, all past input events are recorded and replayed, resulting in a completely
new history. This is implemented in languages such as ElmScript [74] and YinYang [194].
We only implement the real-time live modelling approach, as recorded live modelling has
been shown not to be ideal for simulation [194]. Nonetheless, further investigation into
recorded event live modelling might be interesting for other types of languages.

A lot of work is spent towards making live programming usable. This requires research
as to which representation is most usable, such as textual or graphical languages [102,
128, 193, 219]. Therefore several kinds of languages have been made live: graphical
languages such as VIVA [276] and Flogo [132], textual languages such as ElmScript [74]
and Smalltalk [123], and hybrid languages such as Subtext [102]. Our approach does



6.2. LIVE MODELLING 187

not commit itself to textual, graphical, or hybrid languages. It is implemented on the
abstract syntax of models, and does not require a specific visualization. If required, our
live simulator can be coupled to multiple interfaces, possibly with different representations
(e.g., textual, graphical).

Another important usability aspect of live programming is the need for immediate feed-
back to the user [276], resulting in the need for effective visualization and tight latency
constraints [193, 263]. Latency is considered harmful when it becomes too large, with
the threshold being defined somewhere between 50ms [194] and 500ms [193]. For this
reason, a lot of work has focused on optimizing specific aspects, such as incremental
compilation [194] and code hotswapping [107]. Our framework focuses exclusively on the
functional requirements of live modelling, without considering performance, visualization,
and so on. While these concerns are certainly important, we consider them as future
work.

Many challenges related to live modelling are tackled only for specific cases or specific
languages. An example issue is the question how the state needs to be retained [107, 268],
and what needs to be recomputed [57]. Making an existing programming language live
is often done through ad-hoc modifications, often turning liveness into a black art [55].
With our approach, we provide an overview of the steps required to make an executable
modelling language live. And while not fully automated, since some domain information
remains necessary, the approach becomes structured and easier for language engineers to
understand and implement.

In the modelling domain, the focus has primarily been on the theoretical foundations of
(meta-)modelling [169] and how (domain-specific) modelling can help developers [154].
Nowadays, focus starts shifting to model execution [195] and debugging [189]. And
whereas model debugging is often formalism-specific, such as for Causal Block Dia-
grams [320] and Parallel DEVS [300], recently new approaches have been developed that
try to (partially) automate the addition of debugging to formalisms [293]. Advanced tracing
facilities for domain-specific languages have been developed [51], which enable omniscient,
or backwards-in-time debugging [50]. Closer to our approach is [289], in which the author
explores how executable modelling languages can be made live with “semantic deltas”.
The system is capable of translating source program modifications (so-called deltas) to
operations on the running code. While they present a prototype demonstrating the approach,
it does not present a structured way to add live modelling to modelling languages. Similarly,
another approach is based on textual differences [302], where existing textual difference
algorithms are leveraged to update the executing model. While that approach is also rel-
atively generic, it focuses exclusively on textual languages, and is only evaluated in the
context of one kind of finite state automaton. Since live modelling is rarely implemented,
or at best in an ad-hoc way, we contribute by providing a general framework for merging
liveness into existing modelling languages, paired with an implementation for two example
languages.

Similar to reflection and code hotswapping, the modelling community is starting to ac-
knowledge the existence of models at runtime. These models, however, are mostly used for
self-managing systems [199, 233], and do not directly apply to live modelling. Specifically,
models at runtime make the changes internally, as a part of pre-defined, correct behaviour.
Live modelling, on the other hand, makes changes due to external operations, knowing that
some part of the model may be incorrect. Additionally, models at runtime techniques are



188 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

used to express dynamicly changing systems, whereas live modelling is used for modifiable
systems (e.g., for debugging or education). Due to this mismatch in application domain,
their requirements severely differ. For example, models at runtime do not need to cope
with changes at the design model, but applies changes on the full runtime model, rendering
sanitization unnecessary.

Finally, model evolution [108], and in particular language evolution, has similar challenges
to code hotswapping. When swapping code, but retaining the state, the old state might not
be understandable for the new code operating on it [107]. Similarly, language evolution
tries to tackle the problem of existing models not being updated after a language change.
Sanitization, as part of model co-evolution [197], tackles such changes semi-automatically.
Our sanitization approach is similar, as we also need to adapt a model under execution to
an evolving model.

Summary

We have argued in favour of live modelling: live programming transposed to modelling.
While some approaches exist that already support live modelling, they do so in an ad-hoc
way that cannot be transposed to different (domain-specific) languages. We deconstructed
the live programming process and reconstructed this on top of modelling, pushing all
live modelling logic into a new sanitization activity. Using our approach, adding liveness
to (domain-specific) modelling languages becomes more structured and reproducible,
though still necessarily manual. As an example of our approach, we have applied this
framework to three languages: Finite State Automata (operational semantics with breaking
changes), Discrete Time Causal Block Diagrams (operational semanticsw ith non-breaking
changes), and Continuous Time Causal Block Diagrams (denotational semantics). All
these modelling languages have distinct characteristics, demonstrating that our approach is
widely applicable. For each, a new sanitize activity was defined, while reusing all other
operations and processes, which was sufficient to support live modelling.

6.3 Concrete Syntax

The language engineer is the second type of user we consider. Recall that one of the
responsibilities of the language engineers was to create intuitive languages, correctly
representing the problem domain. In particular, this means that the languages must be
as close to the problem domain as possible, in both abstract and concrete syntax. Many
limitations exist on the concrete syntax of languages, making languages less intuitive than
they should be. The core problem is that many tools, if they support concrete syntax at
all, restrict themselves to an icon-based visualization. While this is helpful in many cases,
icons alone are often not sufficient.

To allow the language engineer to build usable languages, we introduce a multi-paradigm
modelling approach to concrete syntax. Using this framework, many of the existing
limitations are lifted and language engineers gain more power when defining concrete
syntax. The usability of the created concrete syntax itself is not considered: it is still up to
the language engineer to consider the options available and use them wisely.



6.3. CONCRETE SYNTAX 189

6.3.1 Motivation

Domain-Specific Modelling Languages (DSLs) are defined by their abstract and concrete
syntax [161, 299]. The abstract syntax defines the concepts of the language, which can be
instantiated and used as the building blocks of models. For example, the abstract syntax
of UML Class Diagrams defines concepts such as Class, Association, and Attributes. The
concrete syntax defines the visualization, or rendering, of these abstract syntax concepts.
For example, the concrete syntax of UML Class Diagrams defines the mapping of a Class
instance to a rectangle with the name of the class on top and a list of all attributes below it.
Significant restrictions exist in current tools for the definition of concrete syntax, thereby
restricting the language engineer, responsible for creating intuitive languages.

Code-based solutions (i.e., tool plugins) are now often used to implement advanced concrete
syntax functionality. While feasible, the creation of plugins is not always for the faint-
hearted [262], as it relies on tool details (e.g., API) and advanced functionality is non-
intuitive to express. Additionally, creating the concrete syntax is part of the job of the
language engineer, who is not necessarily an expert in tool plugin creation. To address
these problems, we present a different angle of attack, where we apply the Multi-Paradigm
Modelling (MPM) approach to concrete syntax. We identify several limitations in the
concrete syntax of state-of-the-art approaches, which are now addressed with (coded,
language-specific) plugins. All these limitations become easy to solve using our MPM-
based approach, without the need for plugins.

We identify five common limitations: (1) A single front-end (or visualization tool) is
provided, which is largely aware of the concepts of (meta-)modelling. Existing visualization
libraries therefore require a lot of additional code, as these (meta-)modelling concepts need
to be introduced. (2) A single representation is used for all languages, such as one
consisting of rectangles and lines, often arranged in a graph-like manner. While these can
be used as primitives for many types of visualization, some models are ideally expressed
using a plot, or completely different modes of perceptualization. Note the use of the
term perceptualization, as we do not wish to limit ourselves to visual representations of
models, but want to include, for example, text and sound as well. (3) A single mapping
to the representation is used, such as to UML Object Diagrams, which can be used for all
(graph-based) models, but is seldom the most appropriate. Even when a domain-specific
concrete syntax is defined, it is often restricted to only one such mapping. (4) No extra
concrete syntax operations are available, such as domain-specific lay-outing [101], which
aids users in understanding the model. As these algorithms are domain-specific, they must
be part of the specification of the domain-specific language. (5) A one-to-many mapping
between abstract syntax and the visualized model is used, as an icon definition is used.
While this often suffices, many-to-many mappings offer additional possibilities to the
language engineer.

To show the need for more flexibility in concrete syntax definitions, we use the Causal
Block Diagrams (CBD) language [61] as a running example. While this language can be
created and used in current tools, its concrete syntax can not easily be implemented as
we would like. For an optimal interaction between the modeller and the model, several
extensions to concrete syntax are proposed next. The previously mentioned restrictions are
now elaborated on in the context of this motivating example: the CBD language. Note that
our contribution lies in the explicitly modelled framework for concrete syntax, and not in
the extensions offered for this specific domain specific language.



190 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

0 5 10 15 20

t (s)

10

0

10

v
 (

c
m

/s
)

Spring Velocity

0 5 10 15 20

t (s)

0

10

20

y
 (

c
m

)

Spring Extension

Figure 6.31: Plotted trace of the CBD model, with k = 1, m = 1kg , y0 = 20cm ,
v0 = 1 cm

s , and g = 10 cm
s2 .

Our example instance is the same as in the previous section, more specifically that of a
mass suspended by a vertical spring, as shown in Figure 6.14a.

The semantic domain of CBDs is a trace language whose instances contain the values
in the probe blocks, paired with the simulation time at which the value was recorded.
An appropriate perceptualization of a real value changing over time is a plot, as shown
in Figure 6.31. From this figure, the evolution of the value throughout time becomes
immediately obvious. In our case, there are two plots: for the velocity of the mass (v) and
the current position (y).

As previously introduced, many limitations currently exist in the perceptualization and
rendering of models. For each of these limitations, we present a potential requirement of the
CBD concrete syntax, and how current tools fail to adequately address them. In our related
work subsection, we further discuss specific tools and the techniques they use.

Multiple GUIs When modelling CBDs, different users might have different preferences
in how they interact with their model. Some users prefer an online browser-based applica-
tion, requiring no installation nor local code execution, while other users prefer an offline
application which executes locally. Nonetheless, the model should be visualized in the
same way. As these users want to collaborate, they should share the same back-end, while
their front-ends are different.

Although many (meta-)modelling tools explicitly make the distinction between a back-end
and front-end, or expose a modelling API, the distinction between front-end and back-end
is often not as expected. Most of the time, the front-ends still need to be aware of most
meta-modelling concepts, as they receive the abstract syntax model, the metamodel, and
a concrete syntax definition. Changes to the model are then performed in the front-end,
and only the abstract syntax changes are propagated to the back-end. Multiple front-ends
therefore duplicate this modelling code, while it should only be concerned with the binding
to the platform (e.g., TkInter).



6.3. CONCRETE SYNTAX 191

(0; 20.0)

(0.1; 20.1)(0.2; 20.1)

(0.3; 20.0)

(0.4; 19.8)

(0.5; 19.5)

y
(0; 1.0)

(0.1; 0.0)

(0.2; -1.01)
(0.3; -2.02)

(0.4; -3.02)

(0.5; -4.0)

v

Figure 6.32: Graphical representation of the trace in Figure 6.31.

Multiple Perceptualization Formats Visualizing CBDs is completely different from
visualizing their semantics. The semantics of a CBD, expressed as a trace of its signals,
is ideally shown as a plot, instead of a graph-like structure. A possible rendering of a
trace with the same perceptualization format as the CBD model is shown in Figure 6.32.
Clearly, the trace is better visualized as a plot, previously shown in Figure 6.31: the plot
immediately shows the oscillating behaviour, which cannot easily be derived from the set
of tuples.

While different front-ends exist today, most are restricted to a graph-like or text-only
representation of the models. Other perceptualizations might reason about different con-
cepts, such as datapoints (for plots) or music notes (for sonification), instead of graphical
primitives.

Multiple Mappings The ideal visualization of a CBD model depends on the domain
expert looking at it, even when the visualization is relatively similar (e.g., both block-
based). Some elements might have a different icon attached to them, depending on the
background of the user. For example, users with a Simulink R© background are familiar with
the symbols 1/s for an integrator, and Σ for an addition block. Other users might prefer the
symbols

∫
and +, respectively. A visualization with an alternative set of icons is shown in

Figure 6.33.

Even though many tools nowadays support the definition of custom icons for a language,
there is often only one possible visualization attached to it. As such, when a different
visualization is required, the complete model, including abstract syntax, must be copied.
While some tools allow for workarounds, such as defining both icons and only showing
one, depending on a configuration option, this is not an elegant solution.

Lay-Outing The ideal lay-out of CBD elements is closely related to its dataflow. If
the flow goes left-to-right, with the exception of feedback loops (e.g., Figure 6.33), the
semantics is easier to interpret than if the position seems random, as in a circle lay-out [261]
(e.g., Figure 6.34).. The flow of the data, and therefore the ideal lay-out, is specific to CBDs,
as it depends on the topological sort of the dependency tree [61]. This is specific to CBDs
and should therefore not be hard-coded in either the back-end or front-end: it should be
defined and maintained by the language engineer.

While current tools often implement generic lay-out algorithms, such as circle and spring
lay-out, they have no support for lay-out algorithms provided by the language itself (i.e.,
domain-specific lay-out algorithms). Lay-outing can be generalized as a “post-processing
operation” on the rendered model, where the visualized model is reordered. There is thus a
need to define algorithms on the rendered model, ideally included in the concrete syntax
model.



192 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

y0

v0

k ∏

g ∏ ∑ v y
-x

m ∏x-1 1
s

1
s

Figure 6.33: Using different set of icons.

k

g

my0
v0

X

X

+

X

∫
-

1
x

v

∫

y

Figure 6.34: Circle lay-out of the same
model.

y0

v0

m ∫ ∫X

÷

k
X

÷

g
v y

+

-
X

÷

Figure 6.35: Alternative representation using a more complex mapping.

Many-to-many Mapping and Parsing While we have previously allowed for multiple
mappings, thereby allowing for a single element to be visualized in multiple ways, the
modeller might have additional preferences. For example, CBDs are sometimes visualized
with a conjoined addition/subtraction block (e.g., in Ptolemy/Kepler [13]): a single block
has an addition and subtraction port, where all signals are summed, but the signals on the
subtraction port are negated first. This is syntactic sugar for a single addition block, with
negation blocks for each input on the subtraction port, as shown in Figure 6.35. Whichever
representation is used depends on the domain expert, though we want the abstract syntax to
be identical, independent of the used representation.

While this problem seems highly related to the multiple mappings problem, it is funda-
mentally different: the conjoined addition/subtraction block is a single concrete syntax
element with multiple abstract syntax elements underlying it. Indeed, each connection to
the subtraction port has a (hidden) negator block in the abstract syntax. While it is possible
to change the abstract syntax, this would create problems for the other operations, where
the negation block is explicitly present. The problem is therefore the restriction of many
tools to a one-to-many mapping: a single abstract syntax element is rendered by several
concrete syntax elements, independently of other abstract syntax elements. A possible
workaround is the introduction of an intermediate language, which expands or collapses
the addition/subtraction block, though such an intermediate language causes additional



6.3. CONCRETE SYNTAX 193

MMAS MMRender

MAS MRender

MMCL

comprehend

perceptualize

BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

platform

Figure 6.36: Overview of the approach.

consistency problems.

6.3.2 Approach

We now present our multi-paradigm modelling approach to concrete syntax, where we
explicitly model all aspects.

Our approach makes a clear distinction between the responsibilities of the back-end and
front-end. The back-end is responsible for all (meta-)modelling related concepts, including
how models are perceptualized and comprehended. The front-end is responsible only for
how this perceptible model is rendered using a specific platform, such as TkInter. Instead
of transferring the abstract syntax of the model (using domain-specific concepts, such
as Constant), the back-end transforms this model to the MMRender language (which uses
perceptualization concepts, such as Ellipse).

Our approach is centered around four activities, as shown in Figure 6.36: Perceptualization,
Rendering, Recognition, and Comprehension. Our approach is independent of how these
activities are implemented (e.g., in code, using model transformations, or manually).

We now elaborate on each step of our approach, where we link to a minimal example in
the context of CBDs, shown in Figure 6.37. We start at the top left in the figure, with
MAS . MAS is first (1) perceptualized, resulting in an MRender. For example, instances
of the Constant class are translated to a Group containing an Ellipse and Text instance.
This MRender is (2) transferred to the front-end in some way, which is independent of our
approach. In the example, a JSON serialization of the source model is shown. The front-end
has a copy of MRender, which is (3) rendered for that specific platform. For example, all
instances of Ellipse are iterated over, and a create oval TkInter function is invoked.
The TkInter front-end listens to user events (e.g., mouse clicks), thereby (4) altering the
rendered model. For example, the text entry “1” is altered to “2”. Such changes are (5)
recognized (e.g., via callbacks), resulting to changes on MRender. For example, the Text
instance has its attribute text updated to “2”. Changes are (2) transferred to the back-end
again, this can be incremental or overwrite the complete model. Finally, the new MRender

is (6) comprehended, thereby changing MAS . For example, the changed text results in
an update to the value of the constant block. Each of these steps is further elaborated on
next.



194 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

MRENDERMAS

MRENDERMAS

:Constant

value = 1

[
{"type": "Group",
  "x": 30,
  "y": 0,
  "__asid": "__100",
  "__id": "__200",
},
{"type": "Text",
  "x": 3,
  "y": 2,
  "lineWidth": 1,
  "lineColour": "Black",
  "text": "1",
  "__asid": "__101",
  "__id": "__201",
},
...
]

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "1"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "1"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

1

2

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "2"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

[
{"type": "Group",
  "x": 30,
  "y": 0,
  "__asid": "__100",
  "__id": "__200",
},
{"type": "Text",
  "x": 3,
  "y": 2,
  "lineWidth": 1,
  "lineColour": "Black",
  "text": "2",
  "__asid": "__101",
  "__id": "__201",
},
...
]

:Group

x = 30
y = 0

:Text

x = 3
y = 2
lineWidth = 1
lineColour = "Black"
text = "2"

:Ellipse

x = 0
y = 0
lineWidth = 1
lineColour = "Black"
fillColour = "LightYellow"
width = 10
height = 10

:Constant

value = 2

(1) perceptualize (2) transfer
(3) render

(4) alter

(5) recognize
(6) comprehend (2) transfer

back-end front-endcommunication

Figure 6.37: Overview of the approach with an example for CBDs.

GraphicalElement

x : Natural

y : Natural

Group

contains

LineElement

lineWidth : Natural

lineColour : String

Shape

fillColour : String

width : Natural

height : Natural

Rectangle

Ellipse

SVG

data : String

Text

text : String

Figure

width : Natural

height : Natural

targetX : Natural

targetY : Natural

arrowhead : True

Line

Figure 6.38: MMrender for graphical visualization.

Perceptualization

The first step to our approach is perceptualization, where a model in a domain-specific
language MMAS is mapped to a perceptualization language MMRender. This defines how the
model is presented to the user. For each language that we want to visualize, it is important
to define a perceptualization activity, which is the concrete syntax definition.

This activity needs to map to an MMRender, which defines the mode of presentation to the
user. MMRender defines the platform primitives that can be used, such as Ellipse, Rectangle,
and Line. In our example we focus on graphical languages, as this is easiest to present on
paper, and therefore our MMRender is defined as in Figure 6.38. Note that this MMRender is
not yet linked to any specific platform, such as TkInter or Scalable Vector Graphics (SVG).
The used concepts are generic to many graphical visualization libraries.

Our approach is not restricted to any specific MMRender, although we demonstrate our
approach using a metamodel for graphical visualization. It is straightforward to come up
with different MMRender specifications, such as one for plots (e.g., for signal traces), text
(e.g., for action language), or even sound (e.g., for music sheets [265]). We envision a small



6.3. CONCRETE SYNTAX 195

Ellipse

Text
4

5

6

7

Constant

Group

1

2

3

Group

Constant
1

2

3

Constant
1

Figure 6.39: Example rule for CBD perceptualization.

library of different kinds of MMRender to capture all necessary perceptualizations. Of course,
a front-end should also be defined which can render models in that language.

Traceability can be constructed between MAS and MRender, to be used for incremental
perceptualization, where we only perceptualize elements in MAS that have no associated
elements in MRender yet. This is the reason for the loop in Figure 6.36, where perceptual-
ization takes in both MAS and the current MRender. It remains up to the language engineer
whether or not to use incremental perceptualization.

In our example, we transform the single CBD instance of Constant to instances of Group,
Ellipse, and Text, conforming to the MMRender metamodel in Figure 6.38. This defines how
constant blocks are to be presented to the user: as a group of an ellipse and some text. We
defined this activity using model transformations. An example model transformation rule is
shown in Figure 6.39, which creates a Group, Ellipse, and Text instance for each Constant
element that not yet has an associated group. The values of their attributes are hidden due
to space restrictions, but are mostly trivial (e.g., the colour of the ellipse and value of the
text). In a model transformation rule, the Left-Hand Side (LHS) pattern is matched in the
model, and is replaced by the Right-Hand Side (RHS), unless the Negative Application
Condition (NAC, shown in the dashed rectangle) also matches. The (purple) numerical
annotations link elements in the LHS to elements in the RHS.

Model Transfer

As there is an explicit difference between the back-end and the front-end, there needs to be
a way to transfer the models. We want this to be as general as possible, as both the back-end
and front-end could be physically distributed and implemented in different programming
languages. In our example, the model is serialized using JSON, and transferred over
network sockets. Nonetheless, our approach is independent of the implementation details
of model transfer, and we therefore do not elaborate on this aspect. It is only important that
an exact copy of MRender is present on both the back-end and front-end; this can be achieved
in many different ways.

Note that, thanks to our approach, only models in the MMRender language must be transferred,
potentially allowing for additional optimizations in the serialization.

Rendering

When the MRender arrives at the front-end, it needs to be presented to the user. This is
done by mapping the concepts of MRender to the platform operations responsible for the
presentation. As such, the front-end’s interface is described in a platform-independent
way using MMRender. It is thus important that the front-end and back-end agree on the



196 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

same MMRender. Rendering can be seen as a transformation from concepts in MMRender to
concepts in the platform.

While our approach explicitly represents both MRender and MMRender in the front-end, this
does not necessarily have to be the case. For example, the front-end could just iterate over
the JSON serialization it gets in, directly invoking platform functions. And even while the
models are not explicitly present in the front-end, the front-end still makes implicit use of
these models and the back-end ensures well-formedness.

In our example, the front-end maps concepts such as Ellipse to the create oval TkInter
function, also translating the attributes to arguments for that function. The complexity of the
mapping on how close the concepts of MMRender match those of the platform. For example,
if a platform does not support rectangles, elements of the Rectangle class have to be mapped
internally to four seperate lines (or whatever operation the platform provides).

Altering

Some front-ends allow altering the rendered model in some way. Straightforward examples
are moving around elements, changing their size, and so on. Such changes occur in the
platform, and are based on platform events (e.g., button press, mouse move, mouse click),
which need to be mapped to model operations. As the detection of such events is highly
platform-dependent, and can be considered an implementation detail, we do not elaborate
on this. For our approach, it is only important that the rendered model can be altered, as we
are independent of how these changes actually occur.

Even though simple operations are common, altering the model can happen in any way, for
example through sketch interpretation [77, 209], where sketches are recognized as changes
in the platform (e.g., a drawing of a circle is mapped to the TkInter circle concept).

Recognition

When changes are made to the rendered model, these changes have to be propagated to the
MRender, as this is the common exchange format between back-end and front-end. While
this mapping is often trivial, it depends on the match between MMRender and the platform
concepts. For example, for a trivial mapping, moving a rectangle in the platform merely
maps to moving that same rectangle element in MRender. For a complex mapping, however,
the rectangle might be a set of lines in the platform, where moving one of these lines affects
the three other lines as well.

Recognition does not attach semantics to the change. Indeed, changing the value of the text
merely alters the text value, and the associated constant block still has the value 1. As such,
recognition is limited to syntactical changes.

In our example, the mapping is trivial: updating the text value in the platform merely
requires us to update the text attribute of the Text instance in MRender.

Comprehension

Comprehension maps changes on MRender back to changes on MAS . As such, it attaches
semantics to the change that was made. Note that this operation often makes use of the
traceability information that was previously created during perceptualization, as it needs



6.3. CONCRETE SYNTAX 197

to map between both formalisms. Therefore, comprehension can make use of the original
MAS , being the reason for the loop in the overview figure.

Often, a front-end only allow syntactical changes that have no influence on semantics. For
example, moving an element of a topological formalism changes the x and y attributes in
MRender, though it has no effect on the semantics of the model. In many cases, therefore,
comprehension is skipped completely. Nonetheless, it is an essential activity in the context
of free-hand editors, where all changes are made purely in concrete syntax.

The distinction between recognition and comprehension is important. For example, recog-
nition recognizes when a rectangle is dragged to a different location (changing its x and
y attributes), and comprehension comprehends that this implies containment (creating a
Containment link). In contrast to perceptualization, comprehension might fail if the user
creates a structure that cannot be comprehended (i.e., a parsing error). While we are
sure that the modified MRender conforms to MMRender, it does not necessarily represent a
comprehensible model (e.g., a circle has no meaning in CBDs without a text value in
it).

In our example, comprehension maps the text value of the Text element back to the value of
the Constant block. Note that this is one of the only changes on concrete syntax that would
have any semantical effect. For example, altering the x and y attributes of any of these
elements would have no semantical effect, as CBDs are a topological formalism. When the
Text element is deleted altogether, comprehension fails.

6.3.3 Evaluation
We now evaluate our approach by considering the various dimensions of flexibility achieved.
Our research questions are directly related to these dimensions.

Dimensions of Flexibility

With our approach explained, we present how this approach addresses the various restric-
tions of existing tools. For each restriction, we explain how our approach is flexible enough
to support it, applied to our motivating example.

As we did not code our approach, many of these dimensions of flexibility are just the
creation of a new model, in which meta-modelling tools are specialized. The presented
dimensions of flexibility can therefore be explained at a high level of abstraction, without
going into implementation details. This would not be the case for a plugin-based approach,
for example, as we would have to rely on tool-specific API calls.

Multiple GUIs The first restriction was related to having multiple front-ends, possibly
implemented in different implementation languages, though all with similar semantics. We
addressed this problem by presenting the MMRender model as the “interface” for model
rendering: all front-ends must accept the same set of models. As long as the back-end
and front-end agree on a certain MMRender, specified in the back-end, all front-ends that
implement it are supported. In contrast to other tools, where the front-end is offered some
kind of fixed modelling API on abstract syntax, our front-end only receives a serialized
model, in a known format, which it must render as-is: all processing has already been done.



198 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

MMAS MMRender

MAS MRender

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

MMRender

MRender

transfer

render

recognize

implements

<<AS operations>>

platform1

platform2

comprehend

perceptualize

Figure 6.40: Approach with multiple GUI front-ends.

The back-end is completely independent of the front-end and, subsequently, the platform
used for rendering. This is shown in Figure 6.40, where the same MRender and MMRender is
used for two different front-ends, rendering the same representation of the model.

For CBDs, we implemented a front-end in Python/TkInter and JavaScript/SVG. Both are
similar in use and visualization, though their underlying mapping to the platform drastically
differs. There is still much freedom left in the front-end, specifically for elements not defined
in MMRender, such as the supported operations (e.g., zooming, scaling) and interaction with
the user (e.g., mouse-driven, keyboard-driven).

Multiple Perceptualization Formats Since our approach explicitly models MMRender, it
is possible to have several variants, each defining another format. Each front-end merely
ensures that its MMRender is comprehended by the back-end, and can from then on visualize
models in that language. A different MMRender often requires a different front-end, though
this is not required. For example, a TkInter front-end can visualize a text-only MMRender as
a TkInter text widget.

Figure 6.41 shows this in the context of our CBD example, where we have two rendering
formats: one for graphical models (MMGraph

Render), and one for plots (MMPlot
Render). Each MMRender

has its own front-end. Both front-ends are connected to the same back-end and share the
same models and API to these models. Through this API, a graphical front-end receives a
model conforming to MMGraph

Render, and the plotting front-end receives a model conforming to
MMPlot

Render.

Multiple Perceptualizations Since the mapping from MMAS to MMRender is explicitly
modelled, it is possible to change it, or have multiple. Any mapping is fine, as long as it
generates a valid instance of MMRender, and can therefore be rendered. These mappings can
target different versions of MMRender, as was already shown in the previous point, but can
also go to the same MMRender.

Figure 6.42 shows this in the context of our CBD example, where we have two mappings



6.3. CONCRETE SYNTAX 199

MMAS

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
Connection

MRenderMAS MRender
transfer render

recognize

implements

MRender

render

recognize

implements

MRender
transfer

MMRender
Graph MMRender

Graph

Graph Graph

Plot Plot

PlotPlotMMRender MMRender

(t0; v0)

(t1; v1)

(t2; v2)

platform1

platform2

comprehend

perceptualize

com
prehend

perceptualize

Figure 6.41: Approach with multiple MMRender models.

MMAS MMRender

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MAS
transfer render

recognize

implements

MRender

render

recognize

MRender
transfer

V1

V2 V2

MRender
V1 MRender

platformcomprehend

perceptualize

comprehend

perceptualize

Figure 6.42: Approach with multiple mappers to the same MMRender. The same tool is used
for both models, though different instances.

to the same MMRender. One defines the integration block icon as a rectangle with 1/s in it
(MMV1

Render), whereas the other defines it using a triangle and the
∫

symbol in it (MMV2
Render).

Both mappings are equally correct and can be used interchangeably: all changes on one
representation are automatically mimicked on the other representations, as they share the
same MAS .

Lay-outing Lay-outing is an additional operation executed after perceptualization, as
we need to operate on the current visualization. Therefore, it is often shifted to the front-
end completely. In our approach, the perceptualized model is available in the back-end,
where the lay-outing can happen using, for example, model transformations. This not only
makes it possible to share the same lay-out algorithms between front-ends, but also allows
domain-specific lay-outing algorithms. For practical reasons, the lay-out algorithm, and any
other pre- or post-processing operations, are implemented as part of the perceptualization
phase.

For our CBD example, we can implement a new domain-specific lay-out algorithm as part



200 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

of the perceptualization. When new elements are added, users can add them wherever they
want, but they will automatically be placed at the ideal location in the CBD model. With
lay-outing happening at the back-end, all users sharing the same perceptualized model will
also see the lay-out propagated.

Many-to-Many Perceptualization As our mapping for the perceptualization and com-
prehension is any kind of operation, we can use any executable language to define it in.
In contrast to icon definitions, we can map multiple abstract syntax elements to multiple
concrete syntax elements, as the mapping itself is generic. This can be used during percep-
tualization to create complex rules that cannot be expressed with the usual icon definitions:
multiple abstract syntax elements are condensed into a single icon. Thanks to the use of
traceability links in our approach, from MRender to MAS , it is also possible to incrementally
update the concrete syntax, by linking previously rendered elements.

For our CBD example, we are able to utilize model transformations to map elements from
the source language (MAS) to elements in the target language(MRender). In general, model
transformation language are not limited to a one-to-many mapping, in contrast to most icon
definition languages.

Research Questions

We distill our motivating example into five research questions:

• R1: Can new front-ends be implemented fast?

• R2: Can models be perceptualized in different ways?

• R3: Can multiple perceptualizations be defined?

• R4: Can domain-specific lay-outing be defined?

• R5: Can many-to-many perceptualizations be defined?

R1: Lightweight Front-ends We have implemented two separate front-ends, for two
different platforms: TkInter and Matplotlib, both using Python. The Matplotlib front-end
only visualizes the model and does not offer any manipulation operations. The TkInter
front-end includes basic concrete syntax operations, such as moving around elements,
and basic abstract syntax operations, such as modifying attributes. Each front-end was
implemented by a different developer, familiar with the platform. Each individual front-end
took less than one day to implement up to the point where they could visualize the models,
exactly as received from the back-end. Each front-end has a small code base: approximately
250 lines of Python code for the front-end with Matplotlib, and 350 lines for the front-end
with TkInter. For both front-ends, no (meta-)modelling information had to be coded, except
for the implementation of MMRender. This can be considered fast for front-end development,
which usually takes a significant amount of time. In our case, perceptualization was only
defined once in the back-end, instead of once for each front-end.



6.3. CONCRETE SYNTAX 201

R2: Different Perceptualizations Using the two previously implemented front-ends,
we have also shown the feasibility of different perceptualizations. The first front-end
provides a plot-based perceptualization of a trace model. In this perceptualization, the
model is visualized as a graph, and all operations, such as zooming, are provided natively
by the Matplotlib platform. The second front-end provides a graphical perceptualization
of the original CBD and resulting trace model. In this perceptualization, we rely on the
TkInter visualization primitives. The trace model can therefore be perceptualized in two
significantly different ways.

R3: Multiple Similar Perceptualizations Using the previously implemented graphical
front-end, with TkInter, we have implemented two different perceptualizations as model
transformations. This front-end therefore has a drop-down menu for the model to show, and
a drop-down menu for the available perceptualizations. Both are automatically populated
by querying the back-end. The same model can therefore be visualized with two slightly
different transformations.

R4: Domain-Specific Layouting We have implemented a simple lay-out algorithm in
the perceptualization transformation. Combined with the two different perceptualization
transformations, we were able not only to alter the icons of the different concrete syntax
elements, but also to change their relative position. As such, when switching from one
perceptualization to the other, the model not only changes its icons, but the position of these
icons changes as well.

R5: Many-to-many Perceptualization As our approach is based on generic activities,
it stands to reason that we can support many-to-many perceptualization. A simple many-to-
many perceptualization was implemented, as presented before in the motivating example.
After the usual icon mapping, mapping an addition block to a rectangle with the addition
symbol in it, additional model transformation rules are added to search for a negation
block that is connected to the addition block. When such a pattern is found, the concrete
syntax representation of the negation block is removed, and the connection is redrawn to
the negated input port of the addition block. As such, a one-to-many mapping between
MAS and MRender is shown to be possible.

Threats to Validity

For construct validity, our primary threat is the measures used for R1. We used two mea-
sures: the time needed to develop the tool, and the number of lines of code. Development
time highly depends on the skill of the developer and the familiarity with the used libraries.
To minimize the time needed to get familiar with the libraries, developers were familiar
with the library they had to use up to the level that they had no technical problems. The
number of lines of code is not too reliable to determine the difficulty of writing the front-end.
The codebase of the two front-ends mostly consists of linear code and does not include
non-trivial algorithms. For example, out of the 250 lines of code for the plotting front-end,
50 lines are dedicated to the translation of terminology (e.g., “solid” line types in MMRender

to “-” in Matplotlib).



202 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

For external validity, our primary threat is the application to only a single language
(CBDs), with a single back-end (the Modelverse), and only a single implementation
language (Python). Nonetheless, we believe that each of these is representative, and our
approach does not depend on any of these in particular.

For reliability, we note that we depend on the familiarity of the researchers with the
used tools. As we have used our own prototype tools, we knew all details relevant to
the application of our approach. Lack of documentation about these tools might hinder
other researchers from implementing the same functionality in this tool. Another threat to
reliability is the small amount of experiments that were conducted.

6.3.4 Discussion
We briefly present three directions in which our work is currently still limited, but can be
further extended: performance, GUI interaction and concrete syntax definitions.

Performance

Performance has not been discussed up to now, as it is not one of the concerns that we want
to tackle. Nonetheless, concrete syntax can only be deemed usable if it is also sufficiently
efficient to use: model perceptualization and comprehension require a relatively low latency,
as otherwise the interface does not seem responsive, leading to user frustration. Model
transformations are the crucial factor in our approach: benchmarking our approach would
actually be benchmarking the underlying model transformation engine. Many model trans-
formation optimizations have been discussed in the literature, such as incrementality [282],
distributed queries [274], or scope discovery [150]. Our approach itself is independent of
the underlying model transformation algorithm.

GUI Interaction

Up to now, the behaviour of the front-end was considered as a black box. While we did term
its operations as rendering and recognition, nothing is said about how this happens. Many
differences are possible here as well, which can ideally be domain-specific. For example,
what operations does a modeller have to do to delete an element? Must an element be left
clicked and then the delete key pressed, or is there a button to do this? Depending on the
domain, any of these modes of interaction might be more natural to the user.

The behaviour of the GUI, and in particular its interaction with the user, should ideally also
be explicitly modelled, similar to the concrete syntax. This timed, reactive, and possibly con-
current behaviour is best described by a specialized formalism, such as SCCD [298].

Concrete Syntax Definition

While our proposed framework offers a lot of flexibility to language engineers, defining
a concrete syntax mapping is not as easy as an icon definition. To increase usability,
we propose an additional language, the MMCS , which is a language for concrete syntax
definitions. A concrete syntax definition is a DSL for the definition of concrete syntax.
An example is an icon definition language. Instances in this language, termed MCS , can
be used to generate the perceptualization and comprehension model transformation. So



6.3. CONCRETE SYNTAX 203

MMAS MMRender

MMCL

MAS
comprehend

perceptualize
MRender

V1

MMCS

MCS

Figure 6.43: Concrete Syntax definition to automatically generate the perceptualization and
comprehension operations.

while we use the full-blown infrastructure, it becomes possible to use a similar workflow
as before, if so desired. This is shown in Figure 6.43, where we show that both model
transformations are generated from MCS . MMCS is also tightly related to both MMAS and
MMRender, as it uses concepts from both. Again, we are not restricted to a single MMCS , as
it is possible to define and use several, all of which define DSLs for the domain of concrete
syntax definitions.

6.3.5 Related Work
Most (visual) modelling environments support customizing the concrete syntax of modelling
languages. We consider a number of representative examples and explore to which extent
they support the features listed in the previous subsections. Without exception, these tools
hardcode MMRender, meaning that even when they offer some dimensions of flexibility, it is
constrained to a specific type of perceptualization.

AToMPM [273] is a graphical meta-modelling environment, implemented in Javascrip-
t/SVG. It allows language engineers to develop their languages’ abstract syntax using a
class-diagram language. For the concrete syntax, an icon definition language is provided.
The language engineer has to create an icon for each class, and a link for each association.
A class’ icon and an association’s link define the graphical appearance of the instances of
that class or association; it can consist of several graphical primitives such as rectangles,
circles, and lines. The graphical primitives have a number of attributes, such as colour, size,
font (for text), etc. The value of these concrete syntax attributes can depend on the value
of abstract syntax attributes: this can be defined in a mapper. Conversely, changes on the
concrete syntax (e.g., dragging an icon) can be parsed, which results in changes to the value
of the abstract syntax attributes. AToMPM is restricted to one-to-many perceptualization.
Multiple concrete syntaxes can be defined for the same abstract syntax definition; the
front-end allows to switch between different renderings of the same abstract syntax model.
Due to AToMPM’s client-server architecture, an alternative front-end could be developed
using a different platform. Layout algorithms are not supported.

AToM3 [86], the predecessor of AToMPM, is implemented in Python/Tkinter. Model
storage and visualization are tightly coupled. Similar to AToMPM, visualization is defined
using an icon editor, though only one concrete syntax definition is supported for each
language, as they are tightly interwoven. No comprehension from concrete to abstract
syntax is supported and perceptualization is limited to displaying the value of an attribute
in a text field. The language engineer can, however, code actions that are triggered by



204 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

events, such as editing an object, moving it, selecting it, etc. These scripts can access both
the abstract syntax and concrete syntax (Python) objects, though they are not governed by
well-formedness rules: invalid configurations can be reached. Some layout algorithms are
provided, such as circle layout and spring layout, though all of them are generic; domain-
specific layout algorithms are not supported. For AToM3, a multi-view component was
previously introduced [85], though this was mostly focused on the abstract syntax and
associated semantics.

MetaEdit+ [154] is a commercial domain-specific meta-modelling environment. To define
the abstract syntax of a language, a metamodel is created in the feature-rich GOPPRR
(Graph-Object-Property-Port-Role-Relationship) language. A symbol editor allows to
customize the concrete syntax of the language; again, each class is given a graphical
representation. Mapping is limited to text elements, whose value can be defined based on
the abstract syntax of the model, and visibility of graphical elements, based on a condition
on the abstract syntax of the model. Custom layout algorithms nor comprehension are
not supported. While MetaEdit+ is a commercial, proprietary tool, it does implement
a SOAP API with which external tools can query and modify the models stored in the
tool. No access is given to the graphical info of the models. Therefore, it is impossible to
implement a minimal user interface with MetaEdit+ as a back-end, unless perceptualization
is implemented from scratch.

A number of frameworks exist that allow language engineers to create graphical user
interfaces in Eclipse EMF2. GMF 3 allows the generation of a modelling tool from a
concrete syntax definition, a perceptualization and a tool definition, which are all explicitly
modelled. Users can generate an editor as an Eclipse plug-in or as a Rich Client Platform
(RCP) application. Reusing existing libraries, however, is not as straightforward. Sirius
builds on GMF and aims to ease the development of modelling tools, while primarily
focusing on multi-view modelling [187]. Multiple concrete syntaxes for the same abstract
syntax are supported, for example by providing multiple viewpoints depending on the level
of abstraction. Papyrus [121] is a tool for modelling UML or SysML diagrams. Focusing
on such standards, the tool allows users to specify tailored concrete syntax for their UML
profile. All these EMF approaches are based on the generation of a modelling tool.

In the domain of textual languages, abstract syntax and concrete syntax are usually defined
together by means of a grammar. In this context, comprehension is equivalent to parsing.
Any (general-purpose) text editor can be used as a front-end for free-hand editing. A
parser is used to determine the text’s conformance to the language. Nowadays, smart text
editors are used to parse the text dynamically during editing, thereby supporting syntax
highlighting, error detection, auto-completion, etc. Xtext is a framework that supports
implementing textual DSLs and such smart editors [106]. A DSL is defined by an Xtext
grammar, from which it is possible to parse an EMF-based abstract syntax tree by using a
generated ANTLR parser. A textual environment can be generated, which includes syntax
highlighting, error visualization, content-assist, folding, jump-to-declaration and reverse-
reference lookup across multiple files. Xtext supports multiple front-end frameworks, such
as Eclipse, IntelliJ, and web browser support, but the user is not expected to define support
for his own framework. Xtext is defined for textual languages exclusively, unlike our
approach.

2https://www.eclipse.org/emf
3https://www.eclipse.org/modeling/gmp

https://www.eclipse.org/emf
https://www.eclipse.org/modeling/gmp


6.4. MODELVERSE DEBUGGING 205

Textual concrete syntax definition for DSLs is also supported in MetaDepth, based on
ANTLR [84]. In MetaDepth, concrete syntax and abstract syntax definition are separated,
unlike typical approaches for textual syntax. There is no dedicated support for a user
interface; instead, an external general-purpose text editor must be used.

Similar to our approach is Monto [262], which addresses the problem of extending existing
integrated development environments. But whereas their approach sticks to the same
approach as before, trying to make plugins easier to define, our approach takes a radically
different approach by modelling all aspects explicitly. In our approach, plugins disappear,
and effectively become just new models in the tool, which are used to augment the behaviour
of the tool. Projectional editing [326] is an alternative approach, where the abstract syntax,
instead of the concrete syntax, is manipulated.

The overview of our approach bears similarity to the megamodel on parsing and unpars-
ing [335], where 12 classes of artefacts were identified, along with a set of transformations
between them. This overview is mostly oriented towards textual languages. In contrast,
our approach covers different types of perceptualization: textual or graphical perceptual-
ization is handled similarly in our approach. Related to this, our approach is capable of
handling other perceptualization strategies as well, such as sonification, as long as there is
an MMRender and supporting front-end.

Summary
Current approaches to concrete syntax have several restrictions, in particular related to
graphical concrete syntax. We identified five such restrictions which we address by pre-
senting a Multi-Paradigm Modelling (MPM) approach. Our approach explicitly models
concrete syntax mapping as a model transformation, which happens at the back-end, instead
of in the front-end. This makes it applicable for all types of perceptualization and makes
perceptualization available for different types of front-end. Changes to the rendered model
are recognized in the front-end and comprehended by the server to update the abstract
syntax model. We have shown the various dimensions of flexibility offered by this ap-
proach, and described our implementation in the Modelverse. The presented approach can
furthermore be used in the context of collaboration, thereby facilitating the implementation
and combination of model- and screen sharing [318].

6.4 Modelverse Debugging
Finally we consider the third type of user: the Modelverse developer. Recall that one of
the responsibilities of the Modelverse developer was to create a bug-free environment for
the other users to use. Having such a bug-free environment naturally raises the need for
debugging the Modelverse, thereby finding the source of bugs. Debugging the Modelverse
is hard, however, due to the complex nature of the tool. Indeed, the Modelverse was
constructed using MPM techniques because of its complex and distributed nature. While
debugging can be done at the level of the generated code, this is not ideal: the code is at the
wrong level of abstraction and most parts of the code are synthesized from models. The
Modelverse is also difficult to debug using existing code debuggers, as it is a distributed
application. This means that there are multiple processes, possibly at multiple machines,
all interacting with one another. When debugging, however, these applications would all
have to be debugged individually.



206 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

In this section, we consider this problem in general: how can complex and distributed
systems be debugged efficiently. We apply it to the Modelverse, which is also the example,
though this technique is applicable in general.

6.4.1 Motivation

As the Modelverse is to be executed on a shared-resource machine, its interleavings with
other processes is non-deterministic. The use of a network renders it even less reproducible:
network delays are non-deterministic by nature. While developing such systems, bugs can
be hard to replicate, as they are often related to these interleavings. For example, bugs
causing deadlocks might only occur in a very select number of situations, and cannot be
reproduced with absolute certainty. Such bugs are termed “Heisenbugs” [127], and they
represent the majority of bugs in distributed applications. As debugging is an invasive
operation, due to instrumentation, behaviour likely changes during debugging.

These problems are caused by the non-determinism of the underlying platform, being a
timing issue. Debugging, and specifically instrumentation, affects timing as operations
suddenly take longer to execute, or more operations have to be executed. Additionally, the
operating system will perform different interleaving for different executions, thereby also
altering timing. This results in potentially different behaviour, making debugging harder.
To address these timing problems, we apply the same technique as with the performance
model: we use simulated time by relying on a Parallel DEVS model.

6.4.2 Background: DEVS Debugging

The use of Parallel DEVS for debugging naturally relies on the presence of a Parallel DEVS
model debugger. Therefore, we elaborate on what debugging operations could be supported
by such a debugger, and mention how such a debugger can be created. First, however,
we present the notion of simulated time, which is of critical importance to simulation and
debugging.

Time

The notion of time plays a prominent role in simulation [117, 124]. Simulated time differs
from the wall-clock time: it is the internal clock of the simulator, instead of the time in the
real world. In general, a simulator updates some state variable vector, which keeps track of
the current simulation state each time increment. In contrast to wall-clock time, simulated
time can be arbitrarily updated. This is shown visually in Figure 6.44a. The state is updated
by some computations, transitioning from one consistent state to the other. All computation
required between these two consistent states is called a “step”. For each of these steps, a
number of smaller computational steps may be involved. This is visualized in Figure 6.44b,
where one “big step” is broken up into a number of “small steps”. Note that the simulated
time stays constant in between small steps, and only increases after a big step has been
completed. While the state is guaranteed to be consistent after a big step has completed,
this is not the case for small steps.



6.4. MODELVERSE DEBUGGING 207

S
ta

te
 V

a
ri

a
b

le
 (

S
V

)

Simulated Time (ST)

2.3 30.8

(a) Change of the state variable over
time.

S
im

u
la

te
d

 T
im

e
 (

S
T

)

Simulation Step (SSTEP)

3
2
.3

0
.8

0

"small step"

"big step"

(b) Multiple steps executed on a sin-
gle simulation time instance.

Figure 6.44: Simulation time and steps.

Debugging Operations

We now explore the different ways in which Parallel DEVS models can be debugged. We
assume an operational view: the model is simulated through the use of an external simulator,
instead of compilation to code. An appropriate model debugger should offer functional-
ity similar to code debuggers: stepping, pausing, setting breakpoints, etc. Furthermore,
formalism-specific debugging operations should be provided.

Pausing Pausing is a useful debugging operation, as it allows to interrupt a running
program or simulation and inspect the current state of the system. A pause can either be
manually requested by a user, or triggered automatically as a result of a breakpoint. The
breakpoint specifies a condition on the runtime state, which, as soon as it evaluates to true,
pauses the simulation.

State Inspection and Manipulation The state of a Parallel DEVS system is the combi-
nation of the states of its components, with each atomic DEVS models in exactly one state
at the same time. Upon pausing the simulation, the user might observe that the model is in
an unexpected state. It might then be useful to force changes to the system state, to observe
the effects. We differentiate between two ways of manipulating the state: (1) God events
alter state variables directly, but are invasive, and (2) Event injection sends an artificial
event, thereby influencing the state variables indirectly.

Steps Based on the Parallel DEVS simulation algorithm, we distinguish three ways of
stepping through the simulation of a Parallel DEVS model: “big step”, “small step”, and
“step back”.

Big Step To see system behaviour on a fine-grained level, a user might step through the
simulation to dynamically see the state evolving. We see this “big step” as the minimum
amount of computation for bringing the system from one consistent state to the next.



208 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

Small Step For even more fine-grained control over the simulation, modellers might be
interested in seeing the effects of the different phases in the simulation algorithm. We
see a “small step” as the execution of one of the six phases of a big step: (1) compute
imminent models, (2) generate output events, (3) route events, (4) find transitioning mod-
els, (5) perform transition function, and (6) compute time advance. Simulation is in an
inconsistent state while “small stepping”, and only becomes consistent if the big step is
terminated.

Step Back Stepping back in time causes the simulation to revert to the last consistent
state (i.e., revert the last big step). This is often termed “omniscient debugging”, and it
generally has a high impact on simulation performance. Nonetheless, it has become more
popular recently and has often been praised for the additional insights in the model it helps
reveal.

Tracing The previous techniques were concerned with “live debugging”, which debugs
the model during simulation. While this is useful, it is sometimes necessary to get a full
overview of the system’s execution history after simulation has finished. We call this
post-mortem debugging.

Debugger Creation

In the context of this work, we created a visual modelling, simulation, and debugging
environment for Parallel DEVS, based on the PythonPDEVS [308] simulator. To manage
the inherent complexity, we de- and reconstruct the PythonPDEVS simulator [308] and add
debugging support to its modal part (which is explicitly modelled in the Statecharts [133]
formalism) of the simulator. This is based on our previous work [293], where the de- and
reconstruction approach was introduced for instrumenting model simulators. Opportunities
for Parallel DEVS debugging were first explored in [296]. We combine the simulator
with the visual modelling tool AToMPM [273], allowing for the visual interactive control
of DEVS model simulations. Although we chose two research tools with which we are
familiar, the same technique can be applied to other environments and simulators with
similar capabilities.

The process of de- and reconstruction is not presented in detail, as it does not contribute
to the final result: how to debug Parallel DEVS models. The interested reader is referred
to [293, 294, 296, 300]. In essence, the PythonPDEVS simulator’s modal behaviour is
modelled using Statecharts, as shown in Figure 6.45. Generic debugging operations are then
merged with this model, to offer debugging operations, as shown in Figure 6.46..

Efficient Omniscient Debugging

With omniscient debugging, modellers can jump back to arbitrary points in past simulated
time. It has recently received much attention in the programming language domain (e.g.,
in GDB [120]), as it can overcome problems commonly associated with breakpoint-based
debugging [178, 222]. The most prominent being that erroneous behaviour probably
occured before the breakpoint was triggered, for which most information is lost already.
Despite the many advantages of omniscient debugging, implementing it efficiently is



6.4. MODELVERSE DEBUGGING 209

after(delay())

[IN(paused)]

[IN(realtime) and not terminate() and delay() <= 0]

[IN(continuous) and not terminate()]

[IN(realtime) and not terminate() and delay > 0]

[(IN(realtime) and terminate()) or 

 (not IN(paused)) or 

 (IN(continuous) and terminate())]

/ termination_condition

realtime termination_condition / terminate

termination_condition / terminate continuous

simulation_state

main

simulation_flow

check_termination do_simulation

check_termination wait

init

found_internal_imminents

computed_outputfunction routed_messages

found_all_imminents

computed_transitions

realtime paused continuous

Figure 6.45: PythonPDEVS Statechart.

challenging: slowdowns of a factor 100 or more are noted in the literature [181]. We
consider two omniscient debugging operations: taking a single simulation step back, or
jumping to an arbitrary point in simulated time.

We transpose techniques from the domain of optimistic synchronization, and in particular
Time Warp [146], to omniscient debugging. Minor modifications are required, as omniscient
debugging has different priorities: rollbacks can take some time and a complete history of
the model must remain available. Contrary to other omniscient debugging approaches, this
algorithm is lossless and has a low overhead in both time and space.

Problems with Omniscient Debugging Despite omniscient debugging’s advantages,
there are severe performance limitations, making it unsuited for large-scale models. First,
omniscient debugging is plagued with memory issues [50, 71, 223]: storing the complete
simulation trace eventually leads to memory exhaustion, as trace size only increases. Most
omniscient debuggers tackle this problem in a lossy way: using a time window (only store
the last x states) or using partial states (only store the state for several models). Second,
omniscient debuggers have low (forward) simulation performance [181, 222]. The primary
overhead is in serializing and storing model states after each transition.

For our initial Parallel DEVS debugger, Figure 6.47 shows the difference in (forward)
simulation time between turning omniscient debugging on and off, dependent on the size
of the state. We see that execution time increases as the state history increases, due to the
serialization overhead of state saving becoming the bottleneck. The increase is linear, as
the serialization routine used has linear complexity in terms of the state size. This overhead
is always present when the option for omniscient debugging is provided, even when it is
never actually used. The sporadic use of omniscient debugging, therefore, does not warant
the significant overhead on the more frequent forward simulation operations.

Link to Time Warp As the cause of this dual performance problem lies with the state
saving that is performed, we look at this algorithm in detail. The core problem is: “how



210 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM
m

a
in

s
im

u
la

ti
o
n
_
flo

w

c
h
e
c
k
_
te

rm
in

a
ti

o
n

d
o
_
s
im

u
la

ti
o
n

in
it

ia
li
z
e

/ 
a
ll
_
s
ta

te
s

w
o
rk

a
ro

u
n
d

c
h
e
c
k
_
te

rm
in

a
ti

o
n

w
a
it

a
ft

e
r(

d
e
la

y
()

)s
m

a
ll
_
s
te

p
_
c
h

e
c
k

s
m

a
ll
_
s
te

p

in
it

fo
u
n
d
_
in

te
rn

a
l_

im
m

in
e
n

ts

c
o
m

p
u
te

d
_
o
u

tp
u
tf

u
n

c
ti

o
n

ro
u
te

d
_
m

e
s
s
a
g
e
s

fo
u
n
d
_
a
ll
_
im

m
in

e
n
ts

c
o
m

p
u
te

d
_
tr

a
n
s
it

io
n
s

s
m

a
ll
_
s
te

p
 /

 n
e
w

_
tn

[t
e
rm

in
a
te

()
 a

n
d
 n

o
t 

b
re

a
k
p
o
in

t(
)]

 /
 t

e
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n

[b
re

a
k
p
o
in

t(
)]

 /
 t

e
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n
, 
b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d

[t
e
rm

in
a
te

()
 a

n
d
 n

o
t 

b
re

a
k
p
o
in

t(
)]

 /
 t

e
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n

[b
re

a
k
p
o
in

t(
)]

 /
 t

e
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n
, 
b
re

a
k
p
o
in

t_
tr

ig
g
e
re

d

[n
o
t 

te
rm

in
a
te

()
]

[(
IN

(b
ig

_
s
te

p
) 

o
r 

IN
(c

o
n

ti
n
u
o
u
s
))

 a
n

d
 n

o
t 

te
rm

in
a
te

()
]

[I
N

(r
e
a
lt

im
e
) 

a
n

d
 n

o
t 

te
rm

in
a
te

()
 a

n
d
 d

e
la

y
()

 <
=

 0
]

g
o
d
_
e
v
e
n
t

[I
N

(p
a
u
s
e
d
)]

/ 
g
o
d
_
e
v
e
n
t_

o
k
, 
n
e
w

_
tn

[I
N

(r
e
a
lt

im
e
) 

a
n

d
 n

o
t 

te
rm

in
a
te

()
 a

n
d
 d

e
la

y
()

 >
 0

]

[n
o
t 

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
] 

/ 
im

m
in

e
n

ts

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

[n
o
t 

IN
(p

a
u
s
e
d
)]

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
] 

/ 
in

b
a
g
s

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
] 

/ 
tr

a
n
s
it

io
n
in

g

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
] 

/ 
o
u
tb

a
g
s

s
m

a
ll
_
s
te

p
 [

IN
(p

a
u
s
e
d
] 

/ 
n
e
w

_
s
ta

te
s

[I
N

(p
a
u
s
e
d
)]

[I
N

(r
e
a
lt

im
e
) 

o
r 

IN
S
T
A
T
E
(b

ig
_
s
te

p
)]

 /
 b

ig
_
s
te

p
_
d
o
n
e
, 
n
e
w

_
s
ta

te
, 
n

e
w

_
tn

[I
N

(c
o
n
ti

n
u
o
u
s
)]

s
im

u
la

ti
o
n
_
s
ta

te

p
a
u
s
e
d

re
a
lt

im
e

c
o
n
ti

n
u

o
u
s

b
ig

_
s
te

p

re
a
lt

im
e

b
ig

_
s
te

p

s
im

u
la

te

p
a
u
s
e

p
a
u
s
e

te
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n
 /

 t
e
rm

in
a
te

te
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n
 /

 t
e
rm

in
a
te

te
rm

in
a
ti

o
n
_
c
o
n
d
it

io
n
 /

 t
e
rm

in
a
te

, 
a
ll
_
s
ta

te
s

in
je

c
t

in
je

c
t

in
je

c
t 

/ 
in

je
c
t_

o
k

tr
a
c
e

tr
a
c
e

tr
a
c
e
 /

 t
ra

c
e
_
c
o
n
fig

_
o
k

re
s
e
t re

s
e
t

re
s
e
t 

/ 
a
ll
_
s
ta

te
s

b
re

a
k
p
o
in

t

b
re

a
k
p
o
in

t_
m

a
n
a
g
e

a
d
d
_
b
re

a
k
p
o
in

t

d
e
l_

b
re

a
k
p
o
in

t

to
g
g
le

_
b
re

a
k
p
o
in

t

b
a
c
k
w

a
rd

s

[I
N

(p
a
u
s
e
d
)]

/ 
a
ll
_
s
ta

te
s

Figure 6.46: PythonPDEVS Statechart augmented with debugging functionality.



6.4. MODELVERSE DEBUGGING 211

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5000  10000  15000  20000  25000  30000  35000

S
im

u
la

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Model state (Bytes)

Influence of omniscient debugging

With omniscient debugging
Without omniscient debugging

Figure 6.47: Overhead of omniscient debugging in forward simulation.

to jump back to an arbitrary point in history?”. This is the same problem encountered in
optimistic synchronization, and in particular Time Warp.

In the context of Time Warp, several algorithms were created [68, 224, 236], with varying
degrees of stored data. Full State Saving stores a complete model snapshot at each transition,
as discussed before. Copy State Saving stores a snapshot of a specific model that changes its
state, as discussed before. Incremental State Saving stores only the difference between two
subsequent states, in the form of a reverse operation. During a rollback, all state changes
need to be undone in reverse order. This makes the length of the rollback influence the time
taken for the rollback. Periodic State Saving will, instead of storing the model state after
every transition, only store the state periodically. During a rollback, we select the closest
state before the requested time, and simulate from then on. This assumes determinism
in the simulation algorithm, as otherwise it is not guaranteed that the same choices are
made.

There are different non-functional requirements between Time Warp and omniscient debug-
ging. First, Time Warp solves the memory problem by using a window-based approach.
Contrary to omniscient debugging, however, optimistic synchronization can place a lower
bound on the states that will be accessed, using the Global Virtual Time (GVT), allowing it
to use a window. This is not the case with omniscient debugging, as we cannot know what
state the user wants to go back to. Second, rollbacks occur often in Time Warp, and need
to be processed fast to prevent cascading rollbacks [117]. This is again not the case with
omniscient debugging, where backwards steps happen only rarely and performance is less
of an issue.

For Time Warp, the main disadvantage of periodic state saving is that it requires forward
simulation for each backward step. This makes a backward step take longer than a forward
step (as one includes the other). But although this is a substantial problem for Time Warp,
omniscient debugging is used interactively and only rarely. So wheras a latency of 0.1
seconds is too much for Time Warp, even latencies up to half a second might be tolerable
during omniscient debugging. So since periodic state saving’s disadvantages are minimal
for omniscient debugging, we consider this algorithm for our implementation of omniscient
debugging.



212 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

becomes becomes

A

B

C

a1 a2 a3 a4 a5

b1 b3 b4

c1 c2 c4

0 1 2 3 4 5 6 7 8

c3

b2

Figure 6.48: Overview of periodic state saving approach. Green states (light) are stored,
red (dark) states are not. Yellow lines indicate a point at which a snapshot is made.

Periodic State Saving for Omniscient Debugging Our algorithm [306] is based on
Periodic State Saving: instead of storing the state of models at transition-time (as in copy
state saving), we store the full simulation state after a fixed interval. This does not influence
the forward simulation algorithm at all, as storing the model state happens independent of
forward simulation. For backward steps, we search the most recently saved simulation state,
revert to it, and forward simulate from there up to the requested time. Users can configure
the interval, thus influencing performance.

The checkpointing interval is defined in wall-clock time (i.e., real world time), instead
of simulation time (i.e., internal clock of the simulator). While simulation time provides
deterministic points in the simulation where snapshots are made, using the wall-clock time
takes into account a possibly changing simulation pace. Time efficiency, and latency, is
expressed in wall-clock time, as that is the actual time that the modeller will have to wait for
operations. Defining the interval in number of events executed would also be possible, but
has similar disadvantages as basing it on simulation time. The time taken for the forward
simulation phase is bounded by the snapshot interval: with snapshots every x seconds (of
forward simulation), a rollback never requires more than x seconds of forward simulation
to reach the desired state, as otherwise another snapshot would have been closer.

We also allow users to configure the maximally allowed memory use. When simulation
uses more memory, the oldest full model snapshots are compressed and persisted to disk.
Since these old snapshots are very unlikely to be necessary, and responsive performance
is all that we require, there is no significant disadvantage to disk storage. This way, the
full disk space becomes available for use by omniscient debugging, without any noticable
performance impact.

An overview of the approach is shown in Figure 6.48, where only three snapshots are made.
When rolling back, the latest snapshot is selected and simulation is restarted from there on,
until the requested time is reached. For example, when rolling back to time 6, state a4 is
missing, making us roll back to time 4, where a snapshot was previously made. From here,
the transition function resulting in a4 is executed again, to yield the total state at time 6, as
requested.

Nonetheless, main memory is still limited and will eventually fill up. Therefore, old state
snapshots can be persisted to disk when additional main memory is needed. When an older
state snapshot is required, it is just read out from disk. While disk accesses have much
higher latency, the additional delay is only in the order of several milliseconds, and is only
induced once, since a single snapshot is made for the complete state. Including access and
transfer times, reading data still feels interactive, as it only adds milliseconds to the total
time of a rollback. The cost of the forward simulation phase is many times higher. Writing



6.4. MODELVERSE DEBUGGING 213

 0.1

 1

 10

 100

 0  5000  10000  15000  20000  25000  30000  35000

S
im

u
la

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Model state (Bytes)

Influence of omniscient debugging

copy state saving
periodic state saving 0.1s
periodic state saving 0.5s
no omniscient debugging

Figure 6.49: Overhead of omniscient de-
bugging in function of state size (logaritmic
scale).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

L
a

te
n

c
y
 (

s
)

Jump destination time

Jumping to specific points in time

copy
periodic

Figure 6.50: Jump latency for copy and pe-
riodic state saving.

out to disk is slower as well, but happens asynchronously in most operating systems, thereby
mostly avoiding the problem. To further minimize the amount of data that is stored and
has to be written to disk, snapshots can first be compressed using existing general purpose
compression algorithms. The reduced time to write out the compressed snapshot is often
already sufficient to make up for the overhead of compression and decompression.

We evaluate this approach and its configurability in two dimensions: time and mem-
ory.

Time The user is free to configure the interval between consecutive snapshots. Setting a
longer interval between two snapshots results in: (1) lower memory consumption, since
snapshots are saved less frequently; (2) faster forward simulation, since less serialization
pauses occur; (3) slower backward simulation, since less states are saved, requiring more
forward simulation to reach the requested rollback time.

Figure 6.49 shows forward simulation results for periodic state saving, compared to copy
state saving. Two snapshot intervals are considered: 0.1 seconds and 0.5 seconds. In both
cases, forward simulation overhead is much less than usual. For 0.5 seconds, the overhead
is almost neglible. Figure 6.50 shows backward simulation results: how long it takes to
jump to a specific point in time from simulation time 100. In this case, periodic state saving
has an interval of 0.5 seconds, and we indeed see that the maximum time for a backward
simulation step is bounded by 0.5 seconds. As such, a 0.5 seconds interval has an almost
neglible impact on forward simulation, while backward simulation is impacted, though still
feels responsive to users.

Memory The user is free to configure the threshold as to when old snapshots are written
out to disk. Storing more in main memory results in: (1) higher memory consumption, since
more snapshots are stored in memory; (2) faster forward simulation, since less writes to



214 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  100  200  300  400  500  600  700  800  900 1000

M
a

in
 m

e
m

o
ry

 u
s
a

g
e

 (
K

B
)

Simulation time

Memory use during simulation for copy state saving

Main memory consumption
Disk consumption

Figure 6.51: Memory use of copy state sav-
ing.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900  1000
M

a
in

 m
e

m
o

ry
 u

s
a

g
e

 (
K

B
)

Simulation time

Memory use during simulation for periodic state saving

Main memory consumption
Disk consumption

Figure 6.52: Memory use of periodic state
saving.

disk are required; (3) faster backward simulation, since the snapshot is more likely to be in
main memory.

Figure 6.51 presents the memory used for copy state saving, as is the naive approach.
Memory use increases rapidly, as all intermediate states are persisted. At this rate, it is
likely that the disk becomes too slow to write out all the date, thereby even having an
impact on forward simulation performance. Compare this to Figure 6.52, which presents
results for the same simulation but now using periodic state saving. In this case, only three
snapshots are stored, which reduces the required amount of memory by a factor 100 (800
KB instead of 80 MB). This amount of data is also sent to the disk in less requests, making
the latency less noticeable.

Long-running Simulations Even now, our approach cannot handle arbitrarily long run-
ning simulations: just like main memory, disk space eventually runs out. Despite opti-
mizations to increase the capacity of our storage media, such as file compression, this
only delays the point where memory inevitably runs out. Infinitely running simulations
can however still be supported at the cost of increased latency for omniscient debugging
operations. By pruning away intermediate snapshots persisted to disk, we gain more storage
space for future snapshots. This comes at a cost, as each snapshot was there to guarantee
the initially defined latency. Whereas our approach still works even with less snapshots,
latency increases, but remains bounded. For example, when removing every other snapshot,
average latency doubles, though memory consumption halves. This can keep going on,
though latency doubles each time. Nonetheless, the time it takes to reach the requested
state stays bounded. This differs from a window-based approach in that we remain loss-
less. Our approach is also guaranteed to never be slower than restarting the simulation
completely, as a restart is just the worst case situation, in which there is no closer snapshot
available.



6.4. MODELVERSE DEBUGGING 215

Related Work

Related work can be divided in three main dimensions. First, model debugging is a more
general approach to the debugging of DSLs, which could therefore also be applied to
DEVS, given that DEVS can be considered a DSL. Second, some approaches exist to
DEVS debugging, though they mostly rely on code-based approaches and are not centered
around debugging. Third, efficient omniscient debugging techniques are used in various
domains, such as code debugging and model debugging.

Model Debugging We believe debugging support for modelling and simulation has to
be provided at the most appropriate level of abstraction (i.e., using the abstractions of the
formalism, instead of relying on low-level code). In [12], the authors explore requirements
for modelling and simulations tools that support verification, validation and testing. One
of those is the need to present concepts at the domain-specific level. Debuggers for some
other formalisms already exist. In [205], Mustafiz and Vangheluwe construct a debugging
environment for Statecharts, by instrumenting the Statecharts model with appropriate
transitions. We take inspiration from their approach, but generalize their technique to apply
it to other formalisms as well. A debugger for Modelica was developed in [220]. Model
transformation debugging, in particular omniscient debugging techniques, were explored
by Corley in [69].

Methods specific to the debugging of Domain-Specific Languages (DSLs) have also been
researched. In [189], Mannadiar and Vangheluwe address the need for debugging models
in DSLs and propose a mapping of code debugging concepts to model-based design. A
notable work that attempt to generalize techniques for adding debugging support to DSLs
is the Moldable Debugger [63], a reusable framework for developing debuggers for DSLs.
It allows to implement a set of debugging operations such as stepping, state querying, and
visualization at the most appropriate (domain-specific) level of abstraction. In [50], the
authors describe a partly generic debugger that can be extended with domain-specific trace
management functions. They allow the definition of a set of debugging operations that
traverse, query, and manage these execution traces. We take inspiration from their work to
map code debugging operations onto domain-specific debugging operations (in our case,
specific to Parallel DEVS).

We contribute to this emerging field by developing a debugger for Parallel DEVS. In
particular, we define a set of useful debugging operations, based on existing code debugging
techniques as well as simulation-specific operations. We add these operations to the existing
PythonPDEVS [308] simulation kernel using a generic technique which we call the de- and
reconstruction of the simulation kernel. We couple it to a (basic) interactive visual user
interface. In [188], a set of visual interfaces for working with Classic DEVS models is
introduced. The goal is to convey the meaning of the models intuitively, by providing a
visual notation for the design, but also the execution trace of the simulation. This allows
model debugging through the visual inspection of this trace. Closely related is the work
by Kemper [155], who presents a method for debugging stochastic models based on a
visualization of their trace, from which irregular patterns can be discerned. Our work is
complementary, as we focus on dynamic debugging techniques using different types of
steps, execution modes, breakpoints, etc. Our visual interface displays limited information,
and, because of our modular architecture, can be replaced by a more advanced one.



216 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

A
D

E
V

S

D
E

V
S

Su
ite

M
S4

M
e

V
L

E

X
-S

-Y

Py
PD

E
V

S

Pause C Y Y N Y Y
(Scaled) Realtime C Y Y N Y Y
Big Step Y Y Y N Y Y
Small Step C N N N N Y
Termination condition Y N N N N Y
Breakpoints N N N N N Y
Event Injection C Y Y N Y Y
State Changes N N N N N Y
State Visualisation C C C N C Y
Event Visualisation N Y Y N N Y
Tracing C Y Y Y Y Y
Model Visualisation N Y Y Y N Y
Reset N Y Y C Y Y
Step back N N N N N Y

Table 6.1: A comparison with several other DEVS debugging tools.

DEVS Debugging There are a number of commercial and research DEVS modelling
and simulation tools that provide some form of debugging. Table 6.1 compares five of them
with our approach, implemented in PythonPDEVS. For each function, we list whether or
not the tool implements it (Y for yes, N for no), or if there is some preliminary or partial
support (C).

Efficient Omniscient Debugging Omniscient debugging was first explored in the context
of General-Purpose Languages (GPLs). The main difference is their non-determinism:
user input and I/O events have to be stored in order to correctly step back in time. Pothier
et al. use events to monitor the running execution [223]. These events are stored in
a database, which can be distributed to further increase performance. Boothe explores
techniques for efficient bidirectional debugging of GPL programs [49]. These techniques
are based on event traces (to deal with non-determinism) and snapshotting (for increased
performance). Older snapshots are progressively removed as the program is executed (for
memory efficiency). Ultimately, however, memory runs out, as removing events from the
trace is not an option. The only solution is to become lossy: dropping events from the trace,
or limiting the number of backward steps the modeller can make (i.e., a window). If it
turns out that the user is interested in these events after all, the program needs to be reset
and executed again. Some approaches, such as reverse computation [340], partly avoid the
problem of memory consumption. But while they avoid one problem, reverse computation
is computationally more intensive for long jumps, and not even always possible. Engblom
presents an overview of different techniques for omniscient debugging of GPLs [103].
Recently, support for omniscient debugging has also been included in mainstream tools,
such as GDB.

Omniscient debugging techniques have been explored in the context of modelling languages.
Corley et al. have implemented omniscient debugging for model transformations and
analysed its efficiency [70, 71]. Since model transformations are non-deterministic, their



6.4. MODELVERSE DEBUGGING 217

implementation logs each change at the end of a transformation step. By inverting these
changes, users step back to previous states. Overhead is limited, as it is incremental in
nature, though it eventually runs out of memory unless old events are dropped or persisted
to disk. Neither of these handles long running simulations losslessly: disk space can still
run out. Time can also present a minor problem during a rollback, as it is linear in the
length of the rollback: history unrolls step by step.

In contrast to model transformations, Parallel DEVS is a deterministic formalism, meaning
that we can remove arbitrary intermediate states: they can always be computed again.
In [50], the authors explore the debugging of domain-specific languages. Their approach
is based on the saving of a trace during execution, which can be explored backwards and
forwards by the modeller. They allow for domain-specific languages to specialize the
generic trace algorithm, to gain efficiency in space and time.

The literature on omniscient model debugging is rather sparse and does not include many
lossless optimizations or solutions for the memory management problem. Existing ap-
proaches mostly focus on code debugging, or rely on lossy techniques. And while we agree
that lossy techniques are sometimes necessary (i.e., for non-deterministic formalisms), we
can make additional optimizations in the case of Parallel DEVS. The literature on optimistic
synchronization protocols [115, 117], however, has extensive work on optimizing rollbacks
in a deterministic and lossless way. Many variations to, and evaluations of, state saving
algorithm exist [68, 224, 236]. We have based ourselves on these algorithms to define a
lossless, time- and space-conscious omniscient debugging algorithm.

Summary

We created an advanced debugging and experimentation environment for Parallel DEVS
models, offering the user a level of control unmatched by any of the state-of-the-art tools.
The supported operations are similar to those of traditional code debugging tools, though
some operations specific to DEVS were added. Simulation can be paused, resumed, and
stepped through, breakpoints can be set, events can be injected, and the state can be
modified directly. Our approach adds features that are not found in any other tool, such
as god events and stepping back in time. To tackle the complexity of constructing this
debugger, we excplitly modelled the modal part of the simulator. Apart from offering these
advanced features, stepping back in time was implemented efficiently, making it applicable
to large-scale models as well. For this, existing Time Warp state saving algorithms were
reused and adapted in the context of omniscient debugging. A performance evaluation
was given in terms of forward simulation time, backward simulation time, and memory
consumption.

6.4.3 Model

To debug the Modelverse using a Parallel DEVS model, we of course first need this model.
Luckily, this is exactly the same model as was presented in Section 5.12. Indeed, this was
also a DEVS model and it included non-model code as well. Therefore it becomes possible
to run the simulation instead of executing the application.



218 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

6.4.4 Evaluation
While the original application could be debugged using commonplace code debuggers, we
claimed that this is not ideal for distributed and performance-critical applications, such as
the Modelverse. Code debuggers often rely on instrumentation of the source code or binary,
thereby altering the executed code. While instrumentation does not modify the semantics
of the code directly, it might influence the semantics by altering the execution time of
code fragments. Attempts have been made in the literature to minimize instrumentation
overhead, though advanced features, such as omniscient debugging, generally always have
a noticable impact. We consider two shortcomings of code debuggers in our context: lack of
deterministic debugging and advanced debugging features. We elaborate on each problem,
and mention how DEVS modelling and simulation addresses this.

Deterministic Debugging

The first problem is the lack of deterministic debugging. When debugging, the code is
almost always instrumented in one way or the other. The simplest way of debugging,
adding print statements, obviously changes the source code. Even worse, it also changes
the timing behaviour: the print statement has to be executed, causing all operations after it
to start later, possibly changing interleavings. All approaches monitor the application in
one way or the other, resulting in ever so slight changes in execution behaviour. This makes
it difficult to replicate bugs while using a debugger, or even on a second try. As a result,
the same execution might have to be replicated many times, just to make sure that the bug
manifests itself. But even when the bug can be reproduced frequently, the patches that are
applied to further track down the bug (e.g., more print statements), or even to fix the bug
(e.g., change some algorithm), can merely mask away the bug, instead of actually solving
it. When non-determinism is involved, we often cannot be certain whether a bug just no
longer manifests itself, or was completely fixed.

With the DEVS model, we have previously mentioned that we achieved determinism
for performance benchmarks. But this determinism is also present during debugging:
when nothing is altered in the simulated time, any change to the algorithms has no effect
whatsoever on the simulation results. Therefore, print statements can be liberally added,
and we can be sure that the bug is reproducible.

Advanced Debugging Features

The second problem is related to debugging features. While code debuggers have lots
of features, some intrusive features, such as omniscient (reversible) debugging, are only
selectively enabled, as they have a huge performance impact (e.g., up to 50, 000x for
omniscient debugging in GDB) 4. Enabling such features aggravates non-determinism and
makes it even more difficult to replicate the bug. Nonetheless, even with a code debugger
on our DEVS simulation, the huge performance penalty makes it difficult to use, and it then
works at the wrong level of abstraction.

With the DEVS model, however, the level of abstraction can be raised by using a DEVS
debugger. While they both debug the same application, they do so at a different level

4https://softwareengineering.stackexchange.com/questions/181527/
why-is-reverse-debugging-rarely-used

https://softwareengineering.stackexchange.com/questions/181527/why-is-reverse-debugging-rarely-used
https://softwareengineering.stackexchange.com/questions/181527/why-is-reverse-debugging-rarely-used


6.4. MODELVERSE DEBUGGING 219

of abstraction: code debuggers debug each line of code, and for omniscient debugging,
this means that each line of code can be “reverted”. DEVS debuggers, however, debug
transitions of the DEVS model, which are composed of hundreds or thousands of lines of
code. Naturally, the performance impact is decreased significantly. Additionally, advanced
debugging features that are already implemented for the specified DEVS simulator can
be used as-is, such as all the features implemented for PythonPDEVS [300, 306]. This
opens up many new dimensions to the debugging of our application, while limiting the
performance impact [223].

6.4.5 Related Work
Traditional debugging approaches have troubles with distributed systems, as they have
to coordinate different systems and platforms. Some code debuggers do exist, though
they have a limited set of functionality in a distributed setting. Even for non-distributed
programs, code debuggers suffer from the difficulty of reproducing a bug, often called
intermittent bugs, or “Heisenbugs” [127]. Heisenbugs are bugs which “go away when you
look at them”, and could elude programmers for years of execution [127]. In non-distributed
programs, Heisenbugs are much less frequent, as they are often caused by hardware faults.
Much work has been spent on decreasing the overhead of instrumentation, such as using
dedicated hardware [270] or dynamic instrumentation [344]. Nonetheless, an overhead
still exists, thereby altering the behaviour between runs. Related to our work, full system
simulation [11] can be used to completely simulate the hardware on which we are executing.
Compared to our approach, full system simulation is more general, as it allows all types of
applications to be executed. Nonetheless, due to the very low level of abstraction, that of the
CPU instructions, debugging is made difficult again, as we are debugging using low-level
concepts, instead of programming language constructs or modelling concepts. As such, this
approach only seems useful when debugging parts of the operating system. Additionally,
performance is reduced even further, as execution is estimated to take about 50-200 times
as long [11]. No mention is made about using this approach for distributed applications.
For the previously mentioned DEVS models, no mention was made about debugging using
the DEVS model. A distributed version of PythonPDEVS [309] was modelled using DEVS,
and was used for debugging [303]. While no extensive DEVS debugger existed back then,
the deterministic reproducibility of the bug was immensly helpful in debugging problems
with the distributed synchronization algorithms.

Summary
During the development of complex and distributed applications, such as the Modelverse,
problems arise that hinder debugging with today’s code debuggers. Instead we debugged
the Modelverse’s DEVS model, thereby offering full control over time: wall clock time and
simulated time are effectively split. This split gives us the ability to debug the application
without interfering with the delicate timing mechanics underlying the system, and due
to the higher level of abstraction, we can reuse advanced debugging operations, such as
omniscient debugging, without excessive overhead. While these results were obtained
in the context of our prototype MPM tool, we believe it to be applicable to many other
complex, distributed applications. Advantages of using DEVS modelling and simulation
for tool development are relatively easily achievable, given that much code can be reused,
as was the case for our tool.



220 CHAPTER 6. MODELVERSE AS A FOUNDATION FOR MPM

Summary
We started this chapter by linking back to the original requirements in the context of the
Power Window case study. For each of these requirements, we elaborated on how the
Modelverse provided support and was thereby able to correctly execute the case study.
The Modelverse can therefore be called a Multi-Paradigm Modelling tool. Subsequently,
we investigated the applicability of the Modelverse in future research by providing one
contribution for each type of Modelverse user that we originally identified. This was
possible thanks to the design of the Modelverse, which provides support for MPM and is
built using MPM techniques. We presented live modelling for the modeller, as a way of
dynamically altering the model during execution, thereby increasing model comprehension
and insight. We presented a flexible form of concrete syntax for the language engineer, as a
way of defining more complex and non-standard (e.g., not icon-based) concrete syntax for
their languages. We presented DEVS-based debugging for the Modelverse developer, as a
way of deterministic and configurable debugging of a complex, distributed system.



Chapter 7

Conclusions

This thesis set out to contribute to the state-of-the-art in Multi-Paradigm Modelling (MPM).
On the one hand, we provided the necessary foundations and tool support for future research
in the domain. On the other hand, we developed this tool using MPM techniques ourselves,
providing a set of benefits over other tools.

We motivate this research by looking at the complexity of today’s engineered systems.
At run time, software controls hardware components in a feedback loop, the complete
system has to interact (safely) with the environment, and often multiple such systems are
connected over a network and have to cooperate to achieve a task. At design time, these
runtime requirements often require multiple languages and tools to be combined, in order
to create a single big system. To handle these problems, MPM proposes to explicitly model
all relevant aspects of the system, using the most appropriate formalism(s), at the right
level(s) of abstraction, while explicitly modelling the process. We made the assumption
that MPM indeed provides the means of handling these problems, based on collected
experiences from academia and industry. Despite the often claimed advantages of MPM,
tool support was limited and often focussed exclusively on a few requirements related
to MPM (e.g., language engineering, model activities, process modelling, multi-users).
This is not surprising, as each of these aspects contitutes its own research domain, with
its own community. No unified foundation for MPM existed, which incorporates all
aspects of MPM, and is additionally usable for future extensions and applications in the
domain.

There are three parts to this thesis: 1) we created the specification for a prototype tool,
2) implemented a prototype using MPM techniques, and 3) applied it for research in
MPM.

Modelverse Specification

First, we created a specification for a tool with support for all aspects of MPM, termed the
Modelverse, as described in Chapter 4.

221



222 CHAPTER 7. CONCLUSIONS

Types of Users Our starting point was the different types of users that would use such
a tool. We identified three: the modeller, the language engineer, and the Modelverse tool
developer. The modeller creates correct models of the system with respect to some intended
properties, ensuring that the models can be used as an abstraction of the intended system.
The language engineer creates the necessary languages for the modeller, ensuring that these
languages are as intuitive and usable by the modeller as possible. The Modelverse tool
developer creates the necessary tooling for the other users, ensuring that they can use the
tool according to the specification (e.g., bug-free, efficient, distributed).

Requirements In the end, ten requirements were distilled for a tool for MPM, based on
the definition of MPM and the needs in typical MPM scenario’s:

1. Domain-specific languages and models in these languages must be creatable.

2. Activities must be specifiable and executable in many different formalisms.

3. Process models can be created and enacted using previously defined models.

4. Multiple (distributed) users equally share computational resources.

5. Multiple external (proprietary) services must be able to connect.

6. Multiple interfaces must be supported, possibly using a different platform.

7. Models must be sharable between users and groups.

8. User access control regulates sharing of models between users and groups.

9. Links between models must be representable and can be manipulated using meg-
amodels.

10. All tool components must be fully portable between platforms.

Architecture Based on these requirements, we proposed an architecture based on a
client-server setup. The Modelverse Interface (MvI) is the interface to the Modelverse, or
the client. It is responsible for making the Modelverse tool usable by the end-user. The
Modelverse Kernel (MvK) is the client-facing compont of the Modelverse server. It is
responsible for all computation, taking in the requests of the MvI and translating them to
state changes. The Modelverse State (MvS) is the database back-end of the Modelverse
server. It is responsible for effecting all state changes dictated by the MvK. For each part of
the global architecture, the interface was described.

Modelverse Implementation

Second, we created this tool through the use of MPM techniques itself, as shown in
Chapter 5. This was motivated by the claimed benefits of MPM when used for complex
systems, which we assumed to be true. The Modelverse will indeed become a complex
system due to the nature of the requirements mentioned before. For example, there will be a
networking component and interaction with multiple (geographically distributed) users and
(proprietary) tools. By adhering to the MPM approach, we explicitly modelled all relevant



223

aspects of such prototype tool. These aspects included some components that were easier
and more efficient to develop using domain-specific models, such as the user interface, client
API, networking components, and the task manager. For several other aspects, discussed
next, more advantages came to light, thereby addressing problems encountered in current
tools.

Conformance Relation By explicitly modelling the conformance relation, we can dy-
namically support multiple types of conformance in the Modelverse. This is necessary to
address the different non-interoperable implementations of conformance found in today’s
(meta-)modelling tools, which hindered the use of model repositories. Additionally, this
makes it possible to support multiple conformance relations for the same model, possibly
each with their own semantics.

Physical Type Model By explicitly modelling the physical type model, it becomes
possible to implement all model operations in the linguistic dimension, instead of the
physical dimension, as is usually done. This is necessary to abstract away from the physical
implementation, allowing for different physical implementations while maximally reusing
model management operations. Additionally, this makes it possible to perform activity-
based optimizations, where the tool optimizes its internal data representation based on
domain-specific information.

FTG+PM Enactment By explicitly modelling FTG+PM enactment semantics by map-
ping it to an SCCD model, it becomes possible to support FTG+PM enactment on different
platforms without the need for many complex implementations, in particular with relation to
the concurrent behaviour. This is necessary because the implementation of enactment is non-
trivial due to the required concurrency. Additionally, this makes the FTG+PM susceptible
to novel analysis techniques that are applicable in the Statecharts domain.

Service Orchestration By explicitly modelling service orchestration in the SCCD for-
malism, it becomes possible to provide an explicitly modelled interface for a black-box
service. This is necessary to combine non-modelled components in an explicitly modelled
context, thereby leveraging the best of both worlds: the functionality of the black-box
component, with the interface of a white-box component. Additionally, this can be com-
bined with the explicitly modelled FTG+PM to achieve analyzability up to the level of the
different services and their interaction.

Action Language By explicitly modelling the action language semantics through graph
transformation rules, it becomes possible to automatically generate not only (always up-
to-date) documentation, but also an interpreter. This is necessary, as the interpreter should
be easily portable between different platforms, while guaranteeing that the exact same
semantics is used. Additionally, the explicitly modelled abstract syntax graphs is easy to
use as source or target of activities, making it possible to automatically manipulate such
models.



224 CHAPTER 7. CONCLUSIONS

Performance By explicitly modelling and simulating the performance, it becomes possi-
ble to deterministically assess performance in a variety of (hypothetical) scenario’s. This
is necessary to allow for deterministic benchmarks and what-if analysis in a variety of
situations. Additionally, simulating the performance might be more efficient than actual
execution, as many sources of overhead can be simulated as well, such as the network
latency and bandwidth.

Modelverse Application

Third, we applied this prototype tool in the context of FTG+PM enactment for a power
window case study, as often used in the MPM literature, thereby evaluating our tool in
an MPM context. Additionally, we used this prototype tool for further research in the
domain of MPM, thereby focussing on the three types of users we previously identified.
For each of these users, we aid them in their responsibilities by offering new techniques
and functionality. For the modeller, we support live modelling, where an executable model
can be manipulated during execution, with the changes being taken into account in the
current execution already. For the language engineer, we support more flexibility in the
concrete syntax, allowing them to move away from the traditional icon-based concrete
syntax. For the Modelverse tool developer, we support additional debugging functionality
in a deterministic debugging context, by debugging the underlying DEVS model.

Live Modelling Live modelling allows modellers to alter the design model during the
execution of that very same model. As such, modifications have a direct influence on
the execution trace that is at that point being generated. While several such approaches
already exist in the live programming domain, with some crossovers to the live modelling
domain, these are mostly ad-hoc approaches. We proposed an explicitly modelled process
which is generic for many different types of modelling languages, which we have evaluated
for three representative languages: Finite State Automata, Discrete Time Causal Block
Diagrams, and Continuous Time Causal Block Diagrams. This approach requires an MPM
context due to its use of a structured process, containing several intermediate formalisms
and (automated) activities between them. Additionally, this approach is applicable in an
MPM context, as MPM naturally promotes the use of many domain-specific languages,
for which we want to increase the set of available operations with a minimum amount of
development effort.

Concrete Syntax Concrete syntax encompasses the different ways in which a model is
presented towards the user. As such, making this presentation more flexible, for example
by offering alternative ways of perceptualization (e.g., sound for a music sheet model),
can make the model representation more natural, and thus more intuitive for the users.
Other limitations on concrete syntax that we addressed, include strong coupling with the
front-end, lack of domain-specific lay-out algorithms, lack of different concrete syntax
views on the same model, and lack of complex notations (i.e., not a simple icon-based
representation where one abstract syntax element is visualized by several concrete syntax
elements). We proposed an explicitly modelled process for the perceptualization and
rendering of abstract syntax models, which is agnostic to the actual rendering format.
This approach requires an MPM context due to its use of a structured process, containing
several intermediate formalisms and (automated) activities between them. Additionally,



7.1. FUTURE WORK 225

this approach is applicable in an MPM context, as MPM naturally promotes the use of
many domain-specific languages, for which we want to support the most intuitive notation,
however different it is from the traditional icon-based visualizations.

Modelverse Debugging Debugging the Modelverse is complex for the same reasons why
its development was difficult: its use of different interacting users and strong distinction
between different services. Indeed, even a simple setup of the Modelverse requires three
different programs: the MvI, MvK, and MvS. It is therefore difficult to debug all of them
simultaneously: each resides (possibly) on a different machine and has its own control flow.
Current debuggers are not fully up to the task of debugging the combination of several
interacting programs. Additionally, even when the program can be debugged, the use of
many non-deterministic intermediate components, such as the network, naturally results
in non-deterministic executions. When a bug is discovered, it is therefore often difficult
to exactly replicate it, let alone fix it. We proposed to not debug the generated code in a
general purpose programming language, but the DEVS model instead. By using a DEVS
debugger, instead of a general-purpose debugger, the level of abstraction is raised and we
gain full control over the notion of time used during execution. This approach requires an
MPM context due to its use of the internal models of the Modelverse. Additionally, this
approach is applicable in an MPM context, as MPM tools frequently encounter problems
with debugging, exactly due to its distributed and multi-user requirements.

7.1 Future Work
The work presented in this thesis can be extended and applied in many directions of future
work. We present some possible future directions, some of which were already hinted on
throughout this thesis.

Activity-Based Switching of Physical Implementation As the Modelverse has an ex-
plicit model of the PTM, which is used to shift most physical operations to the linguistic
dimension, we mentioned that it is possible to switch the physical implementation of the
Modelverse without porting the existing low-level operations. While we made two such
physical implementations, one based on Python dictionaries and another one based on an
RDF representation, there was no run-time changing or heterogeneous storage possible yet.
Store models heterogeneously (i.e., using a combination of multiple database technologies)
might be interesting, as it allows to match the PTM to the model being stored. For example,
when a matrix model is stored, conforming to the matrix DSL, this can be done in a matrix-
specific PTM. Other (graph-based) models can then be stored in the usual graph-based
PTM. Storing these different representations, while still presenting the whole as a single
graph when required, has potential to increase time and space consumption of the MvS.
By linking in activity metrics, this decision can be made at runtime, and independent of
interactive input from the user: the MvS itself detects access patterns and uses these to
switch to the optimal internal representation dynamically.

Performance Up to now, we only considered performance assessment, and didn’t con-
sider how to improve the performance based on these results. Most of the performance



226 CHAPTER 7. CONCLUSIONS

overhead is due to the MvK execution being explicitly modelled using graph transfor-
mations, requiring much communication with the MvS. While we already optimized the
graph transformation engine in the generated rules, by assuming that no two rules are
simultaneously applicable (as this would result in non-deterministic execution), this is not
sufficient. From the assessment, it was clear that most time is spent in the MvS, due to
the high number of requests made by the MvK. If we were to use a JIT compiler, thereby
avoiding the need for many MvS operations for each MvK atomic operation, this number
of requests can be significantly reduced. An initial JIT compiler was created by Jonathan
Van der Cruysse [288], showing significant improvements already, though we believe that
many further optimizations remain possible.

User Interface The user interface of a (meta-)modelling tool is mostly targeted towards
usability. While we have made several contributions in the Modelverse that likely influence
usability, the attached GUI is only a primitive prototype that serves as a reference implemen-
tation for the Modelverse API. Future work has to be done to make the current interfaces
more user-friendly and evaluate their usability. Similarly, other existing interfaces, such as
the HUTN compiler, can be developed further.

Constrained Live Modelling Sanitization We have presented a structured approach to
live modelling, where all live modelling related operations were lifted to a single sanitization
activity. Language engineers then only have to additionally implement a sanitization
activity to make their domain-specific language live. This activity, however, is currently
unconstrained apart from the meta-model signature (i.e., input and output models must
conform to the meta-model). Indeed, now it is possible to implement arbitrary behaviour in
this sanitization activity, not necessarily related to live modelling (e.g., set the simulation
time to a different value). In future work, this activity could be further constrained to
actually guarantee that it makes sense, for example by forcing that simulation time values
must remain untouched.

Interaction Models for the GUI In our presentation of a more flexible approach to
concrete syntax, we have explicitly moved all perceptualization logic to the back-end, only
keeping the rendering logic in the front-end. And while we have also defined a recognition
and comprehension phase, taking in changes from the front-end and propagating them
to the back-end, we have not mentioned how the front-end manipulates the model. For
example, which sequence of input events is required to drag around an element on the
canvas? Current tools restrict themselves to a generic interface: left-click, move the mouse,
and then left-release are what is required to move an element. This might not be intuitive
for all domain-specific languages, though: if the DSL has no notion of moving elements,
the front-end might have to disallow moving elements altogether. Similarly, some domain-
specific languages might have another way to change the location of an element, which is
more intuitive in that domain. In this case, the interaction is part of the domain-specific
language, and should be created by the language engineer. In summary, the language
engineer should not only have full control over the concrete syntax, but also over the
interaction with said concrete syntax. In future work, we project that the language engineer
creates not only a concrete syntax model, but includes an interaction model, which is used
by the front-end.



Appendix A

Modelverse State Specification

This chapter introduces a formalized description of the specification of the Modelverse
State (MvS). Assuming that an informal description is already known, as presented in this
thesis, the specification of the various operations is given.

A.1 Data representation
The Modelverse State defines a graph G = 〈NG, EG, NV,G〉, element of G (the set of
all possible states of the MvS). It consists of nodes (identifiers stored in NG), possibly
with values ∈ U defined on them through the mapping NV,G : NG → U, and edges,
stored as triples {〈s, id, t〉} ∈ EG. We additionally define the set of edge identifiers
as EIDS,G = {id‖〈s, id, t〉 ∈ EG}. An edge is identified by its identifier, such that
∀ei, ej ∈ E : ei = (a, b, c), ej = (d, e, f), (b = e)⇒ (a = d) ∧ (c = f). The combined
set of all identifiers is termed IDSG = NG ∪EIDS,G and there is no overlap between both
sets (NG ∩ EIDS,G = ∅). Nodes and edges have a unique identifier, with IDSG being
(exactly) the set of all identifiers.

U defines the set of all possible node values and is the union of all possible types: U =
I ∪ F ∪ S ∪ B ∪A ∪Σtype. We define the following primitive types, supported in the PTM,
for which the MvS provides native support:

• Integer (I) as the set of integers in the range [−263, 263 − 1];

• Float (F) as the set of double precision floating point numbers;

• String (S) as the set of all ordered combinations of ASCII characters;

• Boolean (B) as either True or False;

• Action (A) as an action language construct, used to define Modelverse semantics.
These are { if, while, assign, call, break, continue, return, resolve, access, constant,
declare, global, input, output }.

We use I and F, instead of Z and R, respectively, for practical reasons, as this is closer to the
implementation level and allows for more efficient implementations. By enforce the size of

227



228 APPENDIX A. MODELVERSE STATE SPECIFICATION

data values, we prevent implementation-dependent behaviour (e.g., some implementation
using 32-bit integers, whereas another uses 64-bit integers).

A subgraphM = 〈NM , EM , NV,M 〉 of a graphG = 〈NG, EG, NV,G〉, denoted asM ⊆ G
as a graph containing a subset of the nodes (NM ⊆ NG) and edges (EG ⊆ EG), where all
used nodes node values are copied as well (∀(a, b, c) ∈ EM : a ∈ IDSM ∧ c ∈ IDSM

and ∀(a → b) ∈ NV,G : a ∈ NM ⇒ (a → b) ∈ NV,M ). It is implicit that the resulting
graph should still be valid according to the restrictions placed on the graph (e.g., source and
target of nodes is still present).

A.2 CRUD interface

The interface provides the various operations that are available. Each reply is furthermore
annotated with a status code (S), indicating whether the operation was successful (s = 100),
if syntactical preconditions were invalid (s = 2xx), or if semantical preconditions were
invalid (s = 3xx).

A.2.1 Create

First is the create node operation (CN ), which takes no arguments and returns the identifier
of the newly created node, which was unused up to now.

CN : G → G ×N × S
CN (〈N,E,NV 〉) = (〈N ∪ {n}, E,NV 〉, n, 100)

n 6∈ IDS

The create edge operation (CE) takes the identifier of the source and target elements (either
a node or an edge) as argument, and returns the identifier of the newly created edge.

CE : G × IDS × IDS → G × EIDS × S
CE(〈N,E,NV 〉, i1, i2) = (〈N,E ∪ {(i1, i3 6∈ IDS, i2)}, NV 〉, i3, 100) if i1 ∈ IDS ∧ i2 ∈ IDS

(〈N,E,NV 〉,None, 200) if i1 6∈ IDS
(〈N,E,NV 〉,None, 201) if i2 6∈ IDS

The last primitive create operation (CNV ) creates a new node, and assigns it a value
immediately. It has the same signature as the create node, but takes a primitive value
to assign to the created node. This operation could be implemented by first creating
an empty node and afterwards updating its value, though this would negatively impact
performance.



A.2. CRUD INTERFACE 229

CNV : G × U→ G ×N × S

CNV (〈N,E,NV 〉, d) =

{
(〈N ∪ {i}, E,NV ∪ (i→ d)〉, i, 100) if d ∈ U

(〈N,E,NV 〉,None, 202) if d 6∈ U
i 6∈ N

For performance, we add a composite create operation, which creates a named edge between
two graph elements (CD). This operation is equivalent to creating an edge between the two
elements, followed by creating an edge from the newly created edge, to the data value that
was specified. It is formalised as follows.

CD : G × IDS × U× IDS → G × S
CD(〈N,E,NV 〉, a, d, b) =

(〈N,E,NV 〉, 203) if a 6∈ IDS
(〈N,E,NV 〉, 204) if d 6∈ U
(〈N,E,NV 〉, 205) if b 6∈ IDS

(〈N ∪ {c}, E ∪ {(a, i1, b), (i1, i2, c)}, NV ∪ {(c→ d)}〉, 100) else

c, i1, i2 6∈ IDS

A.2.2 Read

The next set of operations consists of read operations. As there is no useful information in
non-data nodes, there is no read operation defined on nodes, except for their primitive data
(RV ). It is an error if the node that is being read does not have a value assigned to it.

RV : G ×N → U× S

RV (〈N,E,NV 〉, n) =

 (None, 206) if n 6∈ N
(None, 300) if n 6∈ dom(NV )

(NV (n), 100) else

Instead of a read operation on the nodes, it is possible to read out their outgoing edges (RO)
and incoming edges (RI ). This works for nodes, but also for edges, as edges can also be
the source (and target) of other edges. The result is the identifier of the connected edges, in
an unordered collection.

RO : G × IDS → 2E × S

RO(〈N,E,NV 〉, i) =

{
({(i, b, c) ∈ E, 100) if i ∈ IDS

(None, 207) if i 6∈ IDS



230 APPENDIX A. MODELVERSE STATE SPECIFICATION

RI : G × IDS → 2E × S

RI(〈N,E,NV 〉, i) =

{
({(a, b, i) ∈ E, 100) if i ∈ IDS

(None, 207) if i 6∈ IDS

A read operation for edges (RE) is defined as returning a tuple consisting of the source and
target of the edge. Due to the restriction on the edge identifier, both the source and target
identifier will be smaller than the edge identifier.

RE : G × EIDS → IDS × IDS × S

RE(〈N,E,NV 〉, i1) =

{
(None,None, 209) if i1 6∈ EIDS

(i2, i3, 100) else

e = (i2, i1, i3) ∈ E

For efficiency, an additional “dictionary read” operation (Rdict) is defined to read an
element which is linked to another one through an edge, which is connected to a node
with a primitive value. This allows for a more efficient implementation of lookups from a
specific node, without requiring an exhaustive search of the connected edges. While the
search might still be necessary internally, implementations are free to create specialized
data structures for this operation. Even if that is not the case, this operation reduces the
amount of calls required to 1. If the specified entry is not found in the dictionary, an error is
raised.

Notice that there is room for ambiguity if a node has multiple outgoing links, linking to the
same data value. While this could cause an error, we explicitly allow for this situation for
performance reasons, as otherwise the search would always need to traverse all links, even
if a match was already found. Similarly, multiple outgoing edges might exist with the same
label added to them, resulting in ambiguity. For performance reasons, however, the result
will be non-deterministic.

Rdict : G × IDS × U→ IDS × S
Rdict(〈N,E,NV 〉, i1, v) =

(None, 210) if i1 6∈ IDS
(None, 211) if v 6∈ U
(None, 301) if 6 ∃b, c ∈ EIDS : (i1, b, i2), (b, c,NV (v)) ∈ E

(i2, 100) else

Some other, more complex read operations on dictionaries are also supported, purely for
efficiency reasons. Their errors are similar to the Rdict operation. Each of these operations
returns a slightly different result, determined by the frequently used operations in the next
section. These operations are:



A.2. CRUD INTERFACE 231

• Rdict node returns the element being linked to, but instead of a primitive value, it
searches for a specific element by identifier. It therefore does not try to dereference
the value stored in the resulting element, nor will it match different elements with the
same value.

• Rdict edge is equivalent as Rdict, but returns the identifier of the edge between them,
instead of the element itself.

• Rdict reverse returns a list of all elements that have an outgoing link towards the
passed element, with the provided name on that edge. It is therefore basically a
reverse dictionary lookup: return the dictionaries that contain this exact value with a
specified key.

Multiple combinations would also be possible, though we only formalize those that are
used by the MvK.

Rdict keys : G × IDS → 2IDS × S
Rdict keys(〈N,E,NV 〉, a) ={

(None, 222) if i1 6∈ IDS
({e|(a, b, c), (b, d, e) ∈ E}, 100) else

Rdict node : G × IDS × IDS → IDS × S
Rdict node(〈N,E,NV 〉, i1, d) =

(None, 212) if i1 6∈ IDS
(None, 213) if i2 6∈ IDS
(None, 303) if 6 ∃b, c ∈ EIDS : (i1, b, i2), (b, c, d) ∈ E

(i2, 100) else

Rdict edge : G × IDS × U→ IDS × S
Rdict edge(〈N,E,NV 〉, i1, v) =

(None, 214) if i1 6∈ IDS
(None, 215) if v 6∈ U
(None, 305) if 6 ∃b, c ∈ EIDS : (i1, i2, b), (i2, c,NV (v)) ∈ E

(i2, 100) else

Rdict node edge : G × IDS × IDS → IDS × S
Rdict node edge(〈N,E,NV 〉, i1, d) =

(None, 216) if i1 6∈ IDS
(None, 217) if i2 6∈ IDS
(None, 307) if 6 ∃b, c ∈ EIDS : (i1, i2, b), (i2, c, d) ∈ E

(i2, 100) else



232 APPENDIX A. MODELVERSE STATE SPECIFICATION

Rdict reverse : G × IDS × U→ 2IDS × S
Rdict reverse(〈N,E,NV 〉, i1, v) =
(None, 218) if i1 6∈ IDS
(None, 219) if v 6∈ U
(None, 309) if 6 ∃b, c ∈ EIDS : (i1, b, i2), (b, c, d) ∈ E

({i2 : (i2, b, i1), (b, c, d) ∈ E}, 100) else

A.2.3 Update

Even though we implement a CRUD interface, we do not offer support for any update
operations.

The most important reason is correctness and performance. Updating the source and target
of edges has the potential of creating impossible loops, like an edge connecting itself. While
this is impossible to do when constructing the edge at first (as it is required that its source
and target already exist), this can no longer be guaranteed when the edge is updated. An
alternative would be to allow updates, but search for correctness violations (i.e., recursively
following the source and target of an edge, we ultimately end up in nodes) after the update
was done. This would have a significant, and unpredictable, impact on performance when
performing an update for an edge. As an update operation is similar to a subsequent create
and delete, which have better complexity, we did not think this is a viable approach. Yet
another alternative would be to allow updates again, but only those updates that change the
source and target to nodes that existed when the edge was originally created. This prevents
correctness violations by construction, though it does not make the operation generally
applicable. And since we would need to have a fallback method (i.e., subsequent delete
and create) anyway, it might be easier to just always use the fallback method. This also
prevents us having to store some kind of causality information, like which elements were
created before which other elements.

Another reason is cache management, as also proposed by [192]. If a node can be updated,
caches can become invalid, implying some kind of MvS-initiated invalidation protocol for
the MvK. While we do not have any significant optimization for this yet, restricting updates
has significant potential.

A.2.4 Delete

Finally there are the delete operations. The source and target of each edge should always
exist in the graph. Therefore, if a deleted node or edge is the source or target of an edge,
the edge needs to be recursively removed. The resulting graph should thus be the largest
possible subgraph of the original graph, while still being a valid graph. For the delete node
operation (DN ), the node itself is removed, and then all connected edges are recursively
removed.



A.2. CRUD INTERFACE 233

DN : G ×N → G × S

DN (G = 〈N,E,NV 〉, i) =

{
(G, 220) if i 6∈ N

(〈N \ {i}, E′, N ′V 〉 = G′ ⊂ G, 100) else

∀G′′ ⊆ G : (G′ ⊆ G′′)⇒ G′ = G′′

The delete edge operation (DE) operation is similar, but it is guaranteed that no nodes are
removed at all. Due to recursive deletions, the resulting set of edges is possibly a subset of
the original edges. The resulting graph is again the largest possible (valid) subgraph, with
the specified edge removed.

DE : G × EIDS → G × S
DE(G = 〈N,E,NV 〉, i) ={

(G, 221) if i 6∈ EIDS

(〈N,E′ ⊆ E \ {(a, i, c) ∈ E,N ′V 〉 = G′ ⊂ G, 100) else

∀G′′ ⊆ G : (G′ ⊆ G′′)⇒ G′ = G′′





Appendix B

Action Language Specification

The complete Action Language specification is given below. The Action Language spec-
ification is based on graph transformation rules. These rules are modelled explicitly in
the Modelverse, and are used to automatically generate Graphviz files for documentation
(Section B.1), and synthesize a Python implementation.

B.1 Documentation

We now introduce all graph transformation rules that are used by the Modelverse Kernel to
execute the action code. For each of the figures, we assume that the Modelverse root node
has only a unique match, and is shown in all rules as the topmost node. As we will see,
there is at most one rule applicable, meaning that there is no non-determinism. Additionally,
there will always be an applicable rule, given that the action language code and functions
are well-defined (e.g., the required outgoing links are defined, all function definitions have
a body attached). For each of the rules, we briefly provide some pointers as to what they
mean.

B.1.1 If condition

The If construct will first evaluate the condition (cond link) by moving the instruction
pointer there. It signals that it should be executed again afterwards, but now in phase cond,
by putting this on the evaluation stack (Figure B.1). As soon as the condition is evaluated,
and the If popped back from the stack, the return value (of the condition) can either be True
or False. If it is True (Figure B.2), the then link is executed, and the if is pushed on the
stack again, but now in the final phase finish. This is the phase which signals to another rule
that this operation has finished, and the next instruction can be loaded. If it is False, and
there is an else link (Figure B.3), it is executed, similar to the previous case. If it is False,
but there is no else link (Figure B.4), the If is marked as completed immediately, without
any subsequent actions.

235



236 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’init’

’phase’ ’evalstack’

’evalstack’

!if

’IP’

’IP’

’prev’

’inst’

’cond’

’phase’

’cond’

Figure B.1: If construct needs to evaluate the condition.

taskname

’frame’

’cond’

’phase’ ’evalstack’

’init’

’phase’

True

’returnvalue’

’evalstack’

’IP’

!if

’IP’’prev’

’inst’

’finish’

’phase’

’then’

Figure B.2: If construct needs to evaluate the then branch.



B.1. DOCUMENTATION 237

taskname

’frame’

’cond’

’phase’

!if

’IP’

’evalstack’

False

’returnvalue’

’init’

’phase’

’IP’

’evalstack’

’else’

’prev’

’inst’

’finish’

’phase’

Figure B.3: If construct needs to evaluate the else branch, and there is one.

taskname

’frame’

’cond’

’phase’

’finish’

’phase’

!if

’IP’

False

’returnvalue’

’else’

Figure B.4: If construct needs to evaluate the else branch, but there is none.



238 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’init’

’phase’ ’evalstack’

!while

’IP’

’evalstack’

’IP’

’prev’

’cond’

’inst’

’cond’

’phase’

Figure B.5: While construct needs to evaluate the condition.

taskname

’frame’

’cond’

’phase’

’init’

’phase’

!while

’IP’

’evalstack’

True

’returnvalue’

’evalstack’

’IP’

’body’

’prev’

’inst’ taskname

’init’

’phase’ taskname

Figure B.6: While construct must loop.



B.1. DOCUMENTATION 239

taskname

’frame’

’cond’

’phase’

’finish’

’phase’

!while

’IP’

False

’returnvalue’

Figure B.7: While construct must terminate.

B.1.2 While loop
The While construct will first evaluate the condition (cond link) by moving the instruction
pointer there. It signals that it should be executed again afterwards, but now in phase cond,
by putting this on the stack (Figure B.5). As soon as the condition is evaluated, and the
While popped from the stack, the return value (of the condition) can either be True or False.
If it is True (Figure B.6), the body link is executed, and the While is pushed on the stack
again, but with its phase set to init. This way, the while construct will again be executed
after the body has terminated. By setting the phase to init, we effectively cause looping, as
the condition will again be evaluated, and, depending on the result, the body gets executed
once more. If it is False (Figure B.7), the While is immediately marked as finished and the
body is not executed.

B.1.3 Break
The Break construct will move the instruction pointer back to the While construct it belongs
to (Figure B.8). The phase is set to finish to indicate that the loop has finished. This prevents
the condition evaluation and marks the end of the while loop.

B.1.4 Continue
The Continue construct will move the instruction pointer back to the While construct to
which it belongs (Figure B.9). The phase is set to init to indicate that the loop needs to
continue. This causes the condition to be evaluated again, indicating the next iteration of
the loop.



240 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’init’

’phase’

’finish’

’phase’

!break

’IP’ ’evalstack’ ’evalstack’

!while

’while’

taskname

’finish’

’phase’

’prev’ ’prev’

Figure B.8: Break construct.

taskname

’frame’

’init’

’phase’

!continue

’IP’ ’evalstack’ ’evalstack’

’finish’

’phase’

!while

’while’

taskname

’prev’ ’prev’

Figure B.9: Continue construct.



B.1. DOCUMENTATION 241

taskname

’frame’

’init’

’phase’ ’evalstack’

!access

’IP’

’evalstack’

’IP’

’prev’

’var’

’inst’

’eval’

’phase’

Figure B.10: Access construct must fetch the referred value.

taskname

’frame’

!access

’IP’

’eval’

’phase’

’finish’

’phase’

’returnvalue’

’returnvalue’

’value’

Figure B.11: Access construct needs to access the value.

B.1.5 Access

The Access construct will move the instruction pointer to the variable which has to be
resolved first (Figure B.10). It signals that it needs to be executed again after the variable
was resolved, by putting itself on the evaluation stack. After resolution of the variable, the
value of the variable is accessed and set as the new return value (Figure B.11).



242 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’globals’ ’frame’

a

’finish’

’phase’ ’symbols’ ’returnvalue’

!resolve

’IP’

’init’

’phase’’returnvalue’

a

’var’

Figure B.12: Resolve construct resolves a non-global element.

taskname

’frame’

!resolve

’IP’

’init’

’phase’

’finish’

’phase’ ’symbols’

’returnvalue’

’returnvalue’

’var’

Figure B.13: Resolve construct resolves a global element.

B.1.6 Resolve
With the resolve rule, a variable is looked up in either the local (Figure B.12) or global
(Figure B.13) symbol table. The variable in the symbol table will be set as the returnvalue.
The local symbol table has priority over the global symbol table. Note that the returned
value is only a reference, similar to the lvalue in parsers. A further Access is required to
read out the actual value.



B.1. DOCUMENTATION 243

taskname

’frame’

’init’

’phase’ ’evalstack’

’evalstack’

!assign

’IP’

’IP’

’prev’

’inst’

’value’

’phase’

’var’

Figure B.14: Assign construct reads out the symbol to assign to.

taskname

’frame’

’value’

’phase’

!assign

’IP’

’evalstack’

’init’

’phase’

’IP’

’returnvalue’’variable’

’evalstack’

’value’

’prev’

’inst’

’assign’

’phase’

Figure B.15: Assign construct reads out the value to assign.

B.1.7 Assign

The Assign rule will first evaluate the variable (Figure B.14), as it will first need to be
resolved. After resolution (Figure B.15), the found value is stored in a temporary link from
the frame (variable link). The instruction pointer is moved to the value that will be assigned,
as it will also need to be evaluated. After the value is evaluated (Figure B.16), the value
link in the stored variable is changed to the evaluated value.



244 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

!assign

’IP’

’assign’

’phase’

’finish’

’phase’

’returnvalue’

’variable’

’value’ ’value’

Figure B.16: Assign construct performs the actual assigment.

taskname

’frame’

’init’

’phase’ ’evalstack’

’evalstack’

!call

’IP’

’IP’

’prev’

’inst’

’call’

’phase’

’func’’params’

Figure B.17: Call construct resolves function with no parameters.



B.1. DOCUMENTATION 245

taskname

’frame’

’evalstack’

’evalstack’

!call

’IP’

’IP’

’init’

’phase’

’inst’

’phase’

’prev’

’func’’params’

Figure B.18: Call construct resolves function with parameters.

taskname

’frame’

’frame’

’prev’ ’evalstack’ ’symbols’

!call

’caller’

’returnvalue’

’IP’

’init’

’phase’

’IP’’returnvalue’

’finish’

’phase’

’call’

’phase’

’last_param’’body’

Figure B.19: Call construct invokes with no parameters.



246 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’frame’

’prev’

!call

’caller’

’IP’’symbols’

’IP’

’finish’

’phase’

’returnvalue’

’call’

’phase’

’last_param’

a

’name’ ’value’

a

’params’’body’

Figure B.20: Call construct invokes with parameters.

taskname

’frame’

’returnvalue’

’init’

’phase’ ’evalstack’

’evalstack’

!call

’IP’

’phase’

’IP’

’prev’

’init’

’phase’ ’evalstack’’symbols’ ’returnvalue’

’IP’

’caller’

’body’ ’params’ ’prev’

’inst’

’phase’ ’params’

’next_param’ ’value’

Figure B.21: Call construct evaluates first of multiple parameters.



B.1. DOCUMENTATION 247

taskname

’frame’

’init’

’phase’ ’returnvalue’

’evalstack’

!call

’IP’

’phase’

’IP’

’evalstack’

’prev’

’init’

’phase’ ’evalstack’ ’symbols’ ’returnvalue’

’IP’

’caller’

’body’’params’

’call’

’phase’’inst’

’params’ ’last_param’

’value’

’prev’

Figure B.22: Call construct evaluates first and only parameter.

taskname

’frame’

’returnvalue’

’IP’

’phase’

!call

’IP’

’evalstack’

’evalstack’

’init’

’phase’

’prev’ ’IP’

’caller’

’symbols’ ’body’’params’

a

’value’

a

’name’’next_param’

’value’

’call’

’last_param’

’phase’ ’inst’

’prev’

Figure B.23: Call construct evaluates last of multiple parameters.



248 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’returnvalue’

’phase’ ’evalstack’

’IP’ ’evalstack’

!call

’IP’

’init’

’phase’

’prev’’IP’ ’symbols’

’caller’

’body’’params’

a

’value’

’value’

’next_param’

’next_param’

a

’name’

’prev’

’phase’ ’inst’

Figure B.24: Call construct evaluates next of multiple parameters.

B.1.8 Function Call
A Call construct has different paths, depending on how many parameters there are. The
distinct situations are:

1. No parameters: in this simple case, the method is first resolved by moving the
instruction pointer there, and the call is already put on the stack (Figure B.17). After
the function is resolved (Figure B.19), the call is made by creating a new execution
frame and making it the active frame.

2. One parameter: similar to the previous situation, the function is first resolved
(Figure B.18), but instead of putting the call on the stack, the first parameter is
used. Afterwards (Figure B.22), the stack is created for the resolved function, the
instruction pointer is set to evaluate the argument, and the call is put on the stack.
When the parameter is evaluated (Figure B.20), the result is put in the symbol table
of the new execution frame and the new frame is made active.

3. Two parameters: similar to a single parameter, the first parameter is again put on
the stack for after the function resolution (Figure B.19). When evaluating the first
parameter (Figure B.21), the next param parameter is put on the stack, instead of the
call phase. The second parameter is already the last parameter, so we then put the
call on the stack (Figure B.23). Finally, the function is called as with only a single
parameter (Figure B.20).

4. More than two parameters: similar to two parameters, but with an iteration rule
(Figure B.24) for all parameters except the first and last. This iteration rule simply
evaluates the parameters in order of their next param links.

In all cases, the finish is put on the stack during the call to the function. As soon as the
called function has finished, it will invoke a return and thus pop the active execution frame.



B.1. DOCUMENTATION 249

taskname

’frame’

’frame’

’prev’

’init’

’phase’

!return

’IP’

’value’

Figure B.25: Return construct returns with no returnvalue.

This will make the current frame active again, which will then progress towards the next
instruction.

Parameter passing happens through the use of both named variables and positional parame-
ters. However, the positional parameters are only used to determine the evaluation order,
and not for binding of actual to formal parameter. It is possible for a front-end to offer
positional parameters, by automatically mapping them onto their formal parameters.

B.1.9 Return
For the Return construct, there are again two options: either there is a value to return,
or there is none. If there is no return value (Figure B.25), the current execution frame is
removed and the previous one is made active again, without touching the return value of
the underlying frame. If there is a return value (Figure B.26), it is first evaluated by moving
the instruction pointer there. After evaluation (Figure B.27), the evaluated value is stored in
the returnvalue of the previous frame, and the current frame is deleted.

B.1.10 Constant
The Const construct is used for constants, which are closely linked to the primitive data
types presented in the Modelverse State. It is only used as an ’executable wrapper’ for a
literal: evaluation of this construct will yield the contained node (Figure B.28). The phase
is also set to finish, to indicate termination of the construct.

B.1.11 Declare
The Declare instruction (Figure B.29) will add the specified node to the symbol table, so
that it can be assigned a value, or read out. As the declare does not take a value, the default



250 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’

’frame’

’prev’

’eval’

’phase’

!return

’IP’

’returnvalue’

’returnvalue’ ’returnvalue’

Figure B.26: Return construct evaluates the returnvalue.

taskname

’frame’

’init’

’phase’ ’evalstack’

!return

’IP’

’evalstack’

’IP’

’prev’

’value’

’inst’

’eval’

’phase’

Figure B.27: Return construct returns the evaluated returnvalue.



B.1. DOCUMENTATION 251

taskname

’frame’

’returnvalue’

’init’

’phase’

’finish’

’phase’

!constant

’IP’

’returnvalue’

’node’

Figure B.28: Constant construct.

taskname

’frame’

’init’

’phase’

’finish’

’phase’

!declare

’IP’ ’symbols’

’var’

Figure B.29: Declare construct for a local variable.



252 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’ ’globals’

’init’

’phase’

’finish’

’phase’

!global

’IP’

’var’

Figure B.30: Global construct for a global variable.

value of the node is just an empty node. Future instructions can use the node connected to
the Declare instruction to reference to the variable.

Apart from a declaration in the symbol table of the current user, it is also possible to declare
it in the global namespace (Figure B.30). This makes sure that other users can also find
it and access the values. Its primary use will be function resolution though, as functions
should be declared in a higher scope than the current scope. Nonetheless, it is possible to
define everything else as a global too, making it accessible.

B.1.12 I/O

The Output construct will first evaluate the element the ’value’ link points to (Figure B.32),
and afterwards it puts the returnvalue in the output queue (Figure B.33).

The Input construct will read the value that is in the input queue and put it in place of the
returnvalue. No evaluation whatsoever is done on the values (Figure B.31).

B.1.13 Control Instructions

When the instruction pointer points to an instruction which is marked as finished, one
of these helper rules becomes active. These are responsible for progressing towards the
next instruction. Either there is a next link (Figure B.34), which links towards the next
instruction to execute. If it is present, the instruction pointer is moved to this instruction,
and the phase is reset to init as it is the first time this construct is executed. In case no next
link exists (Figure B.35), the next instruction is popped from the stack, together with its



B.1. DOCUMENTATION 253

taskname

’frame’ ’input’

’input’

’finish’

’phase’ ’returnvalue’

!input

’IP’

’init’

’phase’ ’returnvalue’ ’value’ ’next’

Figure B.31: Input construct for fetching external input.

taskname

’frame’

’init’

’phase’

!output

’IP’

’evalstack’

’evalstack’

’IP’

’value’

’prev’

’inst’

’output’

’phase’

Figure B.32: Output construct must evaluate output value.



254 APPENDIX B. ACTION LANGUAGE SPECIFICATION

taskname

’frame’ ’last_output’

’last_output’

!output

’IP’

’output’

’phase’

’finish’

’phase’ ’returnvalue’ ’value’ ’next’

Figure B.33: Output construct must output the evaluated value.

taskname

’frame’

’finish’

’phase’

’init’

’phase’ ’IP’

’IP’

’next’

Figure B.34: Instruction has finished execution and has a next link.



B.1. DOCUMENTATION 255

taskname

’frame’

’finish’

’phase’ ’IP’

’IP’

’evalstack’

’evalstack’

’phase’’next’ ’prev’

’inst’ ’phase’

Figure B.35: Instruction has finished execution but has no next link.

phase. This popping not only sets the instruction pointer, but also copies the saved phase,
making it possible to progress where we left off.



256 APPENDIX B. ACTION LANGUAGE SPECIFICATION

B.2 Primitives
As there are no special, built-in constructs for basic operations, such as mathematical
operations, all of them have to map to a normal, user-level function. But these functions
cannot implement the specified behaviour either, as the provided data values are MvS
primitives. Such functions are primitive functions, which form the core of the MvK, and
are hardcoded in the MvK implementation.

Primitive functions are hardcoded functions in the MvK, which get loaded like normal
operations (i.e., their parameters are evaluated and loaded on the stack). The execution of
their body differs though, as it is executed without intermediate steps. As they cannot be
written in Action Language, they do not have an implementation in the Action Language
either. It is the MvK which recognizes that there is a primitive function available for the
called function. If so, it calls the primitive instead of the (empty) body.

The operations in Table B.1 and B.2 need to be defined as a primitive by all Modelverse
Kernel implementations, with the specified semantics. None of them are allowed to modify
any of the incoming parameters. Semantics are given in simple Python code.



B.2. PRIMITIVES 257

Name Parameters Returns Semantics

integer addition a: Integer; b: Integer c : Integer c = a+ b
integer subtraction a: Integer; b: Integer c : Integer c = a− b
integer multiplication a: Integer; b: Integer c : Integer c = a× b
integer division a: Integer; b: Integer c : Integer c = a/b
integer lt a: Integer; b: Integer c : Bool c = a < b
integer lte a: Integer; b: Integer c : Bool c = a ≤ b
integer gt a: Integer; b: Integer c : Bool c = a > b
integer gte a: Integer; b: Integer c : Bool c = a ≥ b
integer neg a: Integer c : Bool c = −a
float addition a: Float; b: Float c : Float c = a+ b
float subtraction a: Float; b: Float c : Float c = a− b
float multiplication a: Float; b: Float c : Float c = a× b
float division a: Float; b: Float c : Float c = a/b
float lt a: Float; b: Float c : Bool c = a < b
float lte a: Float; b: Float c : Bool c = a ≤ b
float gt a: Float; b: Float c : Bool c = a > b
float gte a: Float; b: Float c : Bool c = a ≥ b
float neg a: Float c : Bool c = −a
bool and a: Bool; b: Bool c : Bool c = a ∧ b
bool or a: Bool; b: Bool c : Bool c = a ∨ b
bool not a: Bool c : Bool c = ¬a
list read a: Element; b: Integer c : Element c = a[b]
list append a: Element; b: Element a : Element a+ = b
list insert a: Element; b: Element; c: Integer a : Element a.insert(b, c)
list delete a: Element; b: Integer a : Element a = a.pop(b)
list len a: Element b : Integer b = len(a)
dict add a: Element; b: Element, c: Element a : Element a[b] = c
dict delete a: Element; b: Element a : Element delete a[b]
dict read a: Element; b: Element c : Element c = a[b.value]
dict read edge a: Element; b: Element c : Element c = a[b]
dict read node a: Element; b: Element c : Element c = a[b.id].edge
dict len a: Element b : Integer b = len(a)
dict in a: Element; b: Element c : Boolean c = bina
dict in node a: Element; b: Element c : Boolean c = bina
dict keys a: Element b : Element b = a.keys()
string join a: String; b: String c : String c = a.b
string get a: String; b: Integer c : String c = a[b]
string split a: String; b: String c : Element c = a.split(b)
string len a: String b : Integer b = len(a)
set add a: Element; b: Element a : Element a.add(b)
set pop a: Element b : Element b = a.pop()
set remove a: Element; b: Element a : Element a.remove(b)
set remove node a: Element; b: Element a : Element a.remove(b.id)
set in a: Element; b: Element c : Boolean c = bina
value eq a: Element; b: Element c : Bool c = a.value == b.value
value neq a: Element; b: Element c : Bool c = a.value 6= b.value
element eq a: Element; b: Element c : Bool c = a.id == b.id
element neq a: Element; b: Element c : Bool c = a.id 6= b.id

Table B.1: Primitive functions modifying primitive datavalues. If a Value is taken or
returned, this refers to the value of the returned node.



258 APPENDIX B. ACTION LANGUAGE SPECIFICATION

Name Parameters Returns Semantics

cast float a : Element b : Float b = float(a)
cast string a : Element b : String b = str(a)
cast integer a : Element b : Integer b = bool(a)
cast boolean a : Element b : Bool b = bool(a)
cast value a : Element b : String b = str(a.value)
cast id a : Element b : String b = str(a)
create node — a : Element create node and return ID
create edge a : Element; b : Element c : Edge create edge from a to b and return ID
create value a : Value b : Element create node with value a and return ID
is edge a : Element b : Boolean return whether a is an edge or not
read nr out a : Element b : Integer return number of outgoing links from a
read out a : Element; b : Integer c : Element return the bth outgoing link from a
read nr in a : Element b : Integer return number of incoming links from a
read in a : Element; b : Integer c : Element return the bth incoming link from a
read edge src a : Edge b : Element return the source of edge a
read edge dst a : Edge b : Element return the destination of edge a
delete element a : Element a : Boolean delete element a
log a : String a : String print to console at Modelverse server
is physical int a : Element b : Boolean type(a.value) == integer
is physical float a : Element b : Boolean type(a.value) == float
is physical string a : Element b : Boolean type(a.value) == string
is physical boolean a : Element b : Boolean type(a.value) == boolean
is physical action a : Element b : Boolean type(a.value) == action

Table B.2: Lower-level primitive functions to implement. If a Value is taken or returned,
this refers to the value of the returned node.



Bibliography

[1] Software & Systems Process Engineering Metamodel Specification. https://
www.omg.org/spec/SPEM/, 2008. Cited on page 42.

[2] OMG BPMN. http://www.omg.org/spec/BPMN/, 2013. Cited on pages
42, 44, and 52.

[3] OCL. http://www.omg.org/spec/OCL/, 2014. Cited on pages 35, 41,
and 98.

[4] MOF. http://www.omg.org/spec/MOF/, 2015. Cited on page 36.
[5] UML. http://www.omg.org/spec/UML/, 2015. Cited on pages 36 and 89.
[6] AnyLogic. https://anylogic.com, 2018. Cited on pages 43 and 44.
[7] AnyLogic Cloud. https://cloud.anylogic.com/, 2018. Cited on page 44.
[8] Ecore. https://wiki.eclipse.org/Ecore, 2018. Cited on page 45.
[9] ACRETOAIE, V., STÖRRLE, H., AND STRÜBER, D. Transparent model transforma-

tion: Turning your favourite model editor into a transformation tool. Lecture Notes
in Computer Science (2015), 121–130. Cited on page 40.

[10] AL-ZOUBI, K., AND WAINER, G. Interfacing and coordination for a DEVS simula-
tion protocol standard. In Proceedings of the 2008 12th IEEE/ACM International
Symposium on Distributed Simulation and Real-Time Applications (2008), pp. 300–
307. Cited on page 29.

[11] ALBERTSSON, L., AND MAGNUSSON, P. S. Using complete system simulation
for temporal debugging of general purpose operating systems and workloads. In
Proceedings of the International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (2000), pp. 191–198. Cited on page 219.

[12] ALLEN, N. A., SHAFFER, C. A., AND WATSON, L. T. Building modeling tools that
support verification, validation, and testing for the domain expert. In Proceedings
of the 37th Winter Simulation Conference (2005), WSC ’05, Winter Simulation
Conference, pp. 419–426. Cited on page 215.

[13] ALTINTAS, I., BERKLEY, C., JAEGER, E., JONES, M., LUDÄSCHER, B., AND
MOCK, S. Kepler: an extensible system for design and execution of scientific
workflows. In Scientific and Statistical Database Management (2004), pp. 423–424.
Cited on page 192.

[14] ÁLVAREZ, J. M., EVANS, A., AND SAMMUT, P. Mapping between levels in the
metamodel architecture. In Proceedings of the Conference on the Unified Modeling
Language (UML) (2001), pp. 34 – 46. Cited on pages 36, 90, and 93.

259

https://www.omg.org/spec/SPEM/
https://www.omg.org/spec/SPEM/
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/UML/
https://anylogic.com
https://cloud.anylogic.com/
https://wiki.eclipse.org/Ecore


260 BIBLIOGRAPHY

[15] AMÁLIO, N., DE LARA, J., AND GUERRA, E. FRAGMENTA: a theory of fragmen-
tation for MDE. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (2015), pp. 106 – 115. Cited on
pages 90, 93, and 100.

[16] AMRANI, M. A set-theoretic formal specification of the semantics of kermeta. Tech.
Rep. TR-LASSY-12-12, University of Luxembourg, 2012. Cited on page 41.

[17] AMRANI, M. A set-theoretic formal specification of the semantics of Kermeta. Tech.
rep., University of Luxembourg, 2012. Cited on page 90.

[18] ARMSTRONG, J. The development of Erlang. In Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming (New York, NY,
USA, 1997), ICFP ’97, ACM, pp. 196–203. Cited on page 186.

[19] ASIKAINEN, T., AND MÄNNISTÖ, T. Nivel: a metamodelling language with a
formal semantics. Software and Systems Modeling (SoSyM) 8, 4 (2009), 521 – 549.
Cited on pages 36, 90, 93, and 98.

[20] ATKINSON, C. Meta-modeling for distributed object environments. In Proceedings
of the International Workshop on Enterprise Distributed Object Computing (EDOC)
(1997), pp. 90 – 101. Cited on page 40.

[21] ATKINSON, C., AND GERBIG, R. Melanie: multi-level modeling and ontology
engineering environment. In Proceedings of the Master Class on Model-Driven
Engineering: Modeling Wizards (2012), pp. 7:1 – 7:2. Cited on page 98.

[22] ATKINSON, C., AND GERBIG, R. Aspect-oriented concrete syntax definition for
deep modeling languages. In Proceedings of the Workshop on Multi-Level Modelling
(MULTI) (2015), pp. 13 – 22. Cited on pages 93 and 98.

[23] ATKINSON, C., GERBIG, R., AND KÜHNE, T. Comparing multi-level modeling
approaches. In Proceedings of the Workshop on Multi-Level Modelling (MULTI)
(2014), pp. 53 – 61. Cited on pages 39, 40, and 98.

[24] ATKINSON, C., GERBIG, R., AND KÜHNE, T. Opportunities and challenges for
deep constraint languages. In Proceedings of the Workshop on OCL and Textual
Modelling (OCL) (2015), pp. 3 – 18. Cited on pages 41 and 98.

[25] ATKINSON, C., GERBIG, R., AND KÜHNE, T. A unifying approach to connections
for multi-level modeling. In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MoDELS) (2015), pp. 216 – 225. Cited
on pages 39, 90, and 98.

[26] ATKINSON, C., GERBIG, R., AND METZGER, N. On the execution of execution of
deep models. In Proceedings of the International Workshop on Executable Modeling
(EXE) (2015), pp. 28 – 33. Cited on page 39.

[27] ATKINSON, C., KENNEL, B., AND GOSS, B. Supporting constructive and ex-
ploratory modes of modeling in multi-level ontologies. In Proceedings of the
Workshop on Semantic Web Enabled Software Engineering (SWESE) (2011), pp. 1:1
– 1:15. Cited on pages 37, 98, and 108.

[28] ATKINSON, C., AND KÜHNE, T. Strict profiles: Why and how. Lecture Notes in
Computer Science 1939 (2000), 309–322. Cited on page 109.

[29] ATKINSON, C., AND KÜHNE, T. The essence of multilevel metamodeling. In
Proceedings of the Conference on the Unified Modeling Language (UML) (2001),



BIBLIOGRAPHY 261

pp. 19 – 33. Cited on pages 89 and 98.
[30] ATKINSON, C., AND KÜHNE, T. Profiles in a strict metamodeling framework.

Science of Computer Programming 44, 1 (2002), 5 – 22. Cited on page 90.
[31] ATKINSON, C., AND KÜHNE, T. Rearchitecting the UML infrastructure. ACM

Transactions on Modeling and Computer Simulation (TOMACS) 12, 4 (2002), 290 –
321. Cited on pages 38, 39, and 90.

[32] ATKINSON, C., AND KÜHNE, T. Concepts for comparing modeling tool architec-
tures. In Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MoDELS) (2005), pp. 398 – 413. Cited on pages 35, 38,
89, 97, 108, and 109.

[33] ATKINSON, C., AND KÜHNE, T. Reducing accidental complexity in domain models.
Software and Systems Modeling (SoSyM) 7, 3 (2008), 345 – 359. Cited on page 39.

[34] BAKER, P., LOH, S., AND WEIL, F. Model-driven engineering in a large industrial
context — motorola case study. Lecture Notes in Computer Science (2005), 476–491.
Cited on pages 2 and 3.

[35] BARROCA, B., KÜHNE, T., AND VANGHELUWE, H. Integrating language and
ontology engineering. In Proceedings of the Workshop on Multi-Paradigm Modeling
(MPM) (2014), pp. 77 – 86. Cited on page 38.

[36] BASCIANI, F., DI ROCCO, J., DI RUSCIO, D., DI SALLE, A., IOVINO, L., AND
PIERANTONIO, A. MDEForge: an extensible web-based modeling platform. In
Proceedings of the Workshop on Model-Driven Engineering on and for the Cloud
(CloudMDE) (2014), pp. 66 – 75. Cited on pages 44, 45, 56, 90, and 98.

[37] BENDRAOU, R., COMBEMALE, B., CRÉGUT, X., AND GERVAIS, M.-P. Definition
of an eXecutable SPEM. In Proceedings of the Asia-Pacific Software Engineering
Conference (APSEC) (2007), pp. 390–397. Cited on page 42.

[38] BENDRAOU, R., JEZEQUEL, J.-M., GERVAIS, M.-P., AND BLANC, X. A compari-
son of six UML-based languages for software process modeling. IEEE Transactions
on Software Engineering 36, 5 (2010), 662–675. Cited on page 42.

[39] BERGERO, F., AND KOFMAN, E. PowerDEVS: a tool for hybrid system modeling
and real-time simulation. Simulation 87 (2011), 113–132. Cited on pages 29 and 144.

[40] BERNSTEIN, P. A. Applying model management to classical meta data problems. In
Proceedings of the Conference on Innovative Data Systems Research (CIDR) (2003),
pp. 19:1 – 19:12. Cited on page 90.

[41] BÉZIVIN, J. On the unification power of models. Software and Systems Modeling
(SoSyM) 4, 2 (2005), 171 – 188. Cited on pages 42, 89, and 90.

[42] BÉZIVIN, J., JOUAULT, F., ROSENTHAL, P., AND VALDURIEZ, P. Modeling in
the large and modeling in the small. In Proceedings of the European Conference on
Model Driven Architecture: Foundations and Applications (ECMFA) (2005), pp. 33 –
46. Cited on pages 3 and 42.

[43] BÉZIVIN, J., JOUAULT, F., ROSENTHAL, P., AND VALDURIEZ, P. Modeling in
the large and modeling in the small. In Proceedings of the European Conference on
Model Driven Architecture: Foundations and Applications (ECMFA) (2005), pp. 33 –
46. Cited on pages 35, 43, and 100.

[44] BÉZIVIN, J., JOUAULT, F., AND VALDURIEZ, P. On the need for megamodels.



262 BIBLIOGRAPHY

In Proceedings of the Workshop on Best Practices for Model Driven Software
Development (MDSD) (2004), pp. 1:1 – 1:9. Cited on pages 43 and 100.

[45] BHATTACHARJEE, A. K., AND SHYAMASUNDAR, R. K. Activity diagrams : A
formal framework to model business processes and code generation. Journal of
Object Technology 8, 1 (2009), 189–220. Cited on page 121.

[46] BIEHL, M., EL-KHOURY, J., LOIRET, F., AND TÖRNGREN, M. On the modeling
and generation of service-oriented tool chains. Software & Systems Modeling 13, 2
(2014), 461–480. Cited on page 123.

[47] BLOUIN, D., SENN, E., ROUSSEL, K., AND ZENDRA, O. QAML: A multi-
paradigm DSML for quantitative analysis of embedded system architecture models.
In Proceedings of the International Workshop on Multi-Paradigm Modeling (2012),
pp. 37–42. Cited on pages 2 and 4.

[48] BONAVENTURA, M., WAINER, G., AND CASTRO, R. Graphical modeling and
simulation of discrete-event systems with CD++Builder. SIMULATION 89, 1 (2013),
4–27. Cited on page 143.

[49] BOOTHE, B. Efficient algorithms for bidirectional debugging. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation (2000), PLDI ’00, pp. 299–310. Cited on page 216.

[50] BOUSSE, E., CORLEY, J., COMBEMALE, B., GRAY, J., AND BAUDRY, B. Support-
ing efficient and advanced omniscient debugging for xdsmls. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering
(2015), SLE 2015, pp. 137–148. Cited on pages 164, 187, 209, 215, and 217.

[51] BOUSSE, E., MAYERHOFER, T., COMBEMALE, B., AND BAUDRY, B. A Generative
Approach to Define Rich Domain-Specific Trace Metamodels. In 11th European
Conference on Modelling Foundations and Applications (ECMFA) (L’Aquila, Italy,
2015). Cited on page 187.

[52] BROMAN, D., LEE, E. A., TRIPAKIS, S., AND TÖRNGREN, M. Viewpoints,
formalisms, languages, and tools for cyber-physical systems. In Proceedings of the
6th International Workshop on Multi-Paradigm Modeling (2012), ACM, pp. 49–54.
Cited on page 1.

[53] BROSCH, P., KAPPEL, G., LANGER, P., SEIDL, M., WIELAND, K., AND WIMMER,
M. An introduction to model versioning. In Formal Methods for Model-Driven
Engineering - International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM) (2012), pp. 336 – 398. Cited on
page 56.

[54] BRUNET, G., CHECHIK, M., EASTERBROOK, S., NEJATI, S., NIU, N., AND SA-
BETZADEH, M. A manifesto for model merging. In Proceedings of the International
Workshop on Global integrated Model Management (2006), pp. 5 – 12. Cited on
pages 81 and 176.

[55] BURCKHARDT, S., FÄHNDRICH, M., AND KATO, J. It’s alive! continuous feedback
in UI programming. In Proceedings of PLDI ’13 (2013), pp. 95–104. Cited on pages
165 and 187.

[56] BURDEN, H., HELDAL, R., AND LUNDQVIST, M. Industrial experiences from
multi-paradigmatic modelling of signal processing. In Proceedings of International
Workshop on Multi-Paradigm Modeling (2012), pp. 7–12. Cited on page 2.



BIBLIOGRAPHY 263

[57] BURNETT, M. M., ATWOOD, JR., J. W., AND WELCH, Z. T. Implementing level
4 liveness in declarative visual programming languages. In Proceedings of Visual
Languages ’98 (1998), pp. 126–133. Cited on page 187.

[58] CAPOCCHI, L., SANTUCCI, J. F., POGGI, B., AND NICOLAI, C. DEVSimPy: A
collaborative python software for modeling and simulation of DEVS systems. In
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(2011), pp. 170–175. Cited on page 144.

[59] CARDOEN, B., MANHAEVE, S., TUIJN, T., VAN TENDELOO, Y., VANMECHELEN,
K., VANGHELUWE, H., AND BROECKHOVE, J. Performance analysis of a PDEVS
simulator supporting multiple synchronization protocols. In Proceedings of the
2016 Symposium on Theory of Modeling and Simulation - DEVS (Apr. 2016), TM-
S/DEVS ’16, part of the Spring Simulation Multi-Conference, Society for Computer
Simulation International, pp. 614 – 621. Cited on page 116.

[60] CARDOEN, B., MANHAEVE, S., VAN TENDELOO, Y., AND BROECKHOVE, J. A
PDEVS simulator supporting multiple synchronization protocols: implementation
and performance analysis. SIMULATION 93 (2017). Cited on page 116.

[61] CELLIER, F. E. Continuous System Modeling, first ed. Springer-Verlag, 1991. Cited
on pages 14, 21, 23, 165, 169, 170, 189, and 191.

[62] CHEZZI, C. M., TYMOSCHUK, A. R., AND LERMAN, R. A Method for DEVS
Simulation of e-Commerce Processes for Integrated Business and Technology Evalu-
ation (WIP). In Proceedings of the 2013 Spring Simulation Multiconference (2013),
pp. 13:1–13:6. Cited on page 144.

[63] CHIŞ, A., DENKER, M., G ÎRBA, T., AND NIERSTRASZ, O. Practical domain-
specific debuggers using the moldable debugger framework. Computer Languages,
Systems & Structures 44, PA (2015), 89–113. Cited on pages 164 and 215.

[64] CHOU, S.-C. A process modeling language consisting of high level UML-based
diagrams and low level process language. The Journal of Object Technology 1, 4
(2002), 137–163. Cited on page 42.

[65] CHOW, A. C. H., AND ZEIGLER, B. P. Parallel DEVS: a parallel, hierarchical,
modular, modeling formalism. In Proceedings of the 1994 Winter Simulation Multi-
conference (1994), pp. 716–722. Cited on page 143.

[66] CLARK, T., GONZALEZ-PEREZ, C., AND HENDERSON-SELLERS, B. A foundation
for multi-level modelling. In Proceedings of the Workshop on Multi-Level Modelling
(MULTI) (2014), pp. 43 – 52. Cited on pages 40 and 109.

[67] CLAVEL, M., DURÁN, F., EKER, S., LINCOLN, P., MARTÍ-OLIET, N.,
MESEGUER, J., AND QUESADA, J. Maude: specification and programming in
rewriting logic. Theoretical Computer Science 285, 28 (2002), 187 – 243. Cited on
pages 90 and 93.

[68] CLEARY, J., GOMES, F., UNGER, B., XIAO, Z., AND THUDT, R. Cost of state
saving & rollback. SIGSIM Simululation Digest 24, 1 (1994), 94–101. Cited on
pages 211 and 217.

[69] CORLEY, J. Debugging for model transformations. In Proceedings of the MOD-
ELS 2013 Doctoral Symposium co-located with the 16th International ACM/IEEE
Conference on Model Driven Engineering Languages and Systems (MODELS 2013),
Miami, USA, October 1, 2013. (2013), pp. 17–24. Cited on page 215.



264 BIBLIOGRAPHY

[70] CORLEY, J., EDDY, B. P., AND GRAY, J. Towards efficient and scalabale omniscient
debugging for model transformations. In Proceedings of the 14th Workshop on
Domain-Specific Modeling (2014), DSM ’14, ACM, pp. 13–18. Cited on page 216.

[71] CORLEY, J., EDDY, B. P., SYRIANI, E., AND GRAY, J. Efficient and scalable
omniscient debugging for model transformations. Software Quality Journal 25
(2017), 7–48. Cited on pages 209 and 216.

[72] COSTAGLIOLA, G., DEUFEMIA, V., AND POLESE, G. A framework for modeling
and implementing visual notations with applications to software engineering. ACM
Transactions on Software Engineering Methodology 13, 4 (2004), 431–487. Cited
on page 13.

[73] CUMBERLIDGE, M. Business process management with JBoss jBPM. Packt Pub-
lishing Ltd, 2007. Cited on page 122.

[74] CZAPLICKI, E. Elm: Concurrent FRP for functional GUIs. https:
//www.seas.harvard.edu/sites/default/files/files/
archived/Czaplicki.pdf, 2012. Cited on pages 165, 167, and 186.

[75] DÁVID, I., DENIL, J., GADEYNE, K., AND VANGHELUWE, H. Engineering
process transformation to manage (in)consistency. In Proceedings of the 1st Interna-
tional Workshop on Collaborative Modelling in MDE (COMMitMDE 2016) (2016),
http://ceur-ws.org/Vol-1717/, pp. 7–16. Cited on pages 56 and 128.

[76] DÁVID, I., DENIL, J., AND VANGHELUWE, H. Towards inconsistency manage-
ment by process-oriented dependency modeling. In International Workshop on
Collaborative Modelling in MDE (2016), pp. 35–44. Cited on pages 5 and 42.

[77] DAVIS, R. Magic paper: Sketch-understanding research. Computer (2007), 34–41.
Cited on page 196.

[78] DE LARA, J., DI ROCCO, J., DI RUSCIO, D., GUERRA, E., IOVINO, L., PIERAN-
TONIO, A., AND CUADRADO, J. S. Reusing model transformations through typing
requirements models. Lecture Notes in Computer Science 10202 (2017), 264–282.
Cited on page 40.

[79] DE LARA, J., AND GUERRA, E. Deep meta-modelling with MetaDepth. In
Proceedings of the TOOLS EUROPE Conference (2010), pp. 1 – 20. Cited on pages
44, 45, 89, 91, 98, and 109.

[80] DE LARA, J., AND GUERRA, E. Generic meta-modelling with concepts, templates
and mixin layers. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (2010), pp. 16 – 30. Cited on pages
93, 98, and 108.

[81] DE LARA, J., GUERRA, E., COBOS, R., AND LLORENA, J. M. Extending deep
meta-modelling for practical model-driven engineering. The Computer Journal 57, 1
(2014), 36 – 58. Cited on pages 39, 90, 92, and 98.

[82] DE LARA, J., GUERRA, E., AND SÁNCHEZ CUADRADO, J. When and how to use
multilevel modelling. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24, 2 (2014), 12:1 – 12:46. Cited on pages 39, 40, 93, and 98.

[83] DE LARA, J., GUERRA, E., AND SÁNCHEZ CUADRADO, J. A-posteriori typing for
model-driven engineering. In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MoDELS) (2015), pp. 156 – 165. Cited
on pages 38, 98, and 108.

https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf


BIBLIOGRAPHY 265

[84] DE LARA, J., GUERRA, E., AND SÁNCHEZ CUADRADO, J. Model-driven en-
gineering with domain-specific meta-modelling languages. Software and Systems
Modeling (SoSyM) 14, 1 (2015), 429 – 459. Cited on pages 45, 89, 98, and 205.

[85] DE LARA, J., GUERRA, E., AND VANGHELUWE, H. A multi-view component
modelling language for systems design: Checking consistency and timing constraints.
In Visual Modeling for Software Intensive Systems (2005), pp. 27–34. Cited on
page 204.

[86] DE LARA, J., AND VANGHELUWE, H. Atom3: A tool for multi-formalism and meta-
modelling. In International Conference on Fundamental Approaches to Software
Engineering (2002), pp. 174–188. Cited on pages 43, 89, 109, and 203.

[87] DEBRECENI, C., BERGMANN, G., RÁTH, I., AND VARRÓ, D. Property-based
locking in collaborative modeling. In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems (2017), pp. 199–209. Cited
on page 153.

[88] DEGUEULE, T., COMBEMALE, B., BLOUIN, A., BARAIS, O., AND JÉZÉQUEL,
J.-M. Melange: a meta-language for modular and reusable development of DSLs.
In Proceedings of the International Conference on Software Language Engineering
(SLE) (2015), pp. 25 – 36. Cited on page 90.

[89] DEGUEULE, T., COMBEMALE, B., BLOUIN, A., BARAIS, O., AND JÉZÉQUEL,
J.-M. Safe model polymorphism for flexible modeling. Computer Languages,
Systems & Structures 49 (2017), 176–195. Cited on pages 89 and 97.

[90] DEMUTH, A., RIEDL-EHRENLEITNER, M., AND EGYED, A. Towards flexible,
incremental, and paradigm-agnostic consistency checking in multi-level modeling
environments. In Proceedings of the Workshop on Multi-Level Modelling (MULTI)
(2014), pp. 73 – 82. Cited on pages 90, 92, and 98.

[91] DENIL, J. Design, Verification and Deployment of Software-Intensive Systems: A
Multi-Paradigm Modelling Approach. PhD thesis, University of Antwerp, 2013.
Cited on pages 33 and 50.

[92] DENIL, J., JUKŠS, M., VERBRUGGE, C., AND VANGHELUWE, H. Search-based
model optimization using model transformations. In Proceedings of the International
Conference on System Analysis and Modeling (2014), pp. 80–95. Cited on page 41.

[93] DENIL, J., SALAY, R., PAREDIS, C., AND VANGHELUWE, H. Towards agile
model-based systems engineering. In Proceedings of MODELS 2017 Satellite Event
(2017), pp. 424–429. Cited on page 4.

[94] DESHAYES, R., JACQUET, C., HARDEBOLLE, C., BOULANGER, F., AND MENS,
T. Heterogeneous modeling of gesture-based 3D applications. In Proceedings of the
International Workshop on MPM (2012), pp. 19–24. Cited on page 2.

[95] DESHAYES, R., MEYERS, B., MENS, T., AND VANGHELUWE, H. ProMoBox
in practice: A case study on the GISMO domain-specific modelling language. In
Proceedings of MPM (2014), pp. 21–30. Cited on page 5.

[96] DÉVA, G., KOVÁCS, G. F., AND AN, A. Textual, executable, translatable UML. In
Proceedings of the Workshop on OCL and Textual Modelling (OCL) (2014), pp. 3 –
12. Cited on pages 92 and 164.

[97] DI ROCCO, J., DI RUSCIO, D., IOVINO, L., AND PIERANTONIO, A. Collaborative
repositories in model-driven engineering. IEEE Software (2015), 28–34. Cited on



266 BIBLIOGRAPHY

pages 43 and 52.
[98] DI ROCCO, J., DI RUSCIO, D., IOVINO, L., AND PIERANTONIO, A. Collaborative

repositories in model-driven engineering. IEEE Software 32, 3 (2015), 28 – 34.
Cited on page 90.

[99] DI RUCCO, J., DI RUSCIO, D., PIERANTOINI, A., SÁNCHEZ CUADRADO, J.,
DE LARA, J., AND GUERRA, E. Using ATL transformation services in the MDE-
Forge collaborative modeling platform. In Proceedings of the International Confer-
ence on Model Transformation (ICMT) (2016). Cited on pages 45, 89, 90, and 98.

[100] DI SANDRO, A., SALAY, R., FAMELIS, M., KOKALY, S., AND CHECHIK, M.
MMINT: a graphical tool for interactive model management. In Proceedings of the
MoDELS Demo and Poster Session (2015), pp. 16 – 19. Cited on pages 42, 44, 45,
56, 90, and 109.

[101] DUBÉ, D. Graph layout for domain-specific modeling. Master’s thesis, McGill
University, 2006. Cited on page 189.

[102] EDWARDS, J. Subtext: Uncovering the simplicity of programming. In Proceedings
of OOPSLA ’05 (2005), pp. 505–518. Cited on page 186.

[103] ENGBLOM, J. A review of reverse debugging. In Proceedings of the 2012 System,
Software, SoC and Silicon Debug Conference (2012), pp. 1–6. Cited on page 216.

[104] ERNST, J. Data interoperability between CACSD and CASE tools using the CDIF
family of standards. In Proceedings of the 1996 International Symposium on Com-
puter Aided Control System Design (1996), pp. 346–351. Cited on page 3.

[105] ETZLSTORFER, J., KUSEL, A., KAPSAMMER, E., LANGER, P., RETSCHITZEG-
GER, W., SCHOENBOECK, J., SCHWINGER, W., AND WIMMER, M. A survey on
incremental model transformation approaches. In Proceedings of the Workshop on
Models and Evolution (2013), pp. 4–13. Cited on page 41.

[106] EYSHOLDT, M., AND BEHRENS, H. Xtext: implement your language faster
than the quick and dirty way. In Companion to the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(SPLASH/OOPSLA) (2010), pp. 307–309. Cited on page 204.

[107] FABRY, R. S. How to design a system in which modules can be changed on the fly.
In Proceedings of ICSE ’76 (1976), pp. 470–476. Cited on pages 187 and 188.

[108] FAVRE, J.-M. Languages evolve too! changing the software time scale. In Pro-
ceedings of the Eighth International Workshop on Principles of Software Evolution
(Washington, DC, USA, 2005), IWPSE ’05, IEEE Computer Society, pp. 33–44.
Cited on page 188.

[109] FAVRE, J.-M. Megamodelling and etymology. In Proceedings of the Dagstuhl
Seminar on Transformation Techniques in Software Engineering (2006), pp. 5:1 –
5:22. Cited on page 93.

[110] FERAYORNI, A. E., AND SARJOUGHIAN, H. S. Domain driven simulation modeling
for software design. In Proceedings of the 2007 Summer Computer Simulation
Conference (2007), pp. 297–304. Cited on page 144.

[111] FOSTER, H., UCHITEL, S., MAGEE, J., AND KRAMER, J. Model-based verification
of web service compositions. In 18th IEEE International Conference on Automated
Software Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada (2003),



BIBLIOGRAPHY 267

pp. 152–163. Cited on page 122.
[112] FRANCE, R., BIEMAND, J., AND CHENG, B. H. C. Repository for model driven

development. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (2006), pp. 311 – 317. Cited on
pages 44, 46, and 98.

[113] FRANCE, R., BIEMAND, J., AND CHENG, B. H. C. Repository for model driven
development. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (2006), pp. 311 – 317. Cited on
page 90.

[114] FU, X., BULTAN, T., AND SU, J. Analysis of interacting BPEL web services. In
Proceedings of the 13th international conference on World Wide Web, WWW 2004,
New York, NY, USA, May 17-20, 2004 (2004), pp. 621–630. Cited on page 122.

[115] FUJIMOTO, R. M. Parallel discrete event simulation. Communications of the ACM
(1990), 30–53. Cited on pages 115 and 217.

[116] FUJIMOTO, R. M. Performance of time warp under synthetic workkloads. In
Proceedings of the SCS Multiconference on Distributed Simulation (1990). Cited on
page 115.

[117] FUJIMOTO, R. M. Parallel and Distribution Simulation Systems, 1st ed. John Wiley
& Sons, Inc., 1999. Cited on pages 115, 206, 211, and 217.

[118] GALLARDO, J., BRAVO, C., AND REDONDO, M. A. A model-driven develop-
ment method for collaborative modeling tools. Journal of Network and Computer
Applications 35 (2012), 1086–1105. Cited on page 43.

[119] GARLAN, D., MONROE, R. T., AND WILE, D. Acme: An architecture description
interchange language. In Proceedings of CASCON’97 (1997), pp. 169–183. Cited
on page 3.

[120] GDB. GDB reversible debugging. https://www.gnu.org/software/
gdb/news/reversible.html, 2009. Cited on page 208.

[121] GÉRARD, S. Once upon a time, there was Papyrus... In Proceedings of the 3rd
International Conference on Model-Driven Engineering and Software Development
(2015), pp. IS–7. Cited on page 204.

[122] GITZEL, R., OTT, I., AND SCHADER, M. Ontological extension to the MOF
metamodel as a basis for code generation. The Computer Journal 50, 1 (2007),
93–115. Cited on page 63.

[123] GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., 1983. Cited on pages 167
and 186.

[124] GOLDSTEIN, R., AND KHAN, A. A taxonomy of event time representations. In
Proceedings of the Spring Simulation Conference (2017), pp. 6:1–6:12. Cited on
pages 143 and 206.

[125] GÓMEZ, A., MENDIALDUA, X., BERGMANN, G., CABOT, J., DEBRECENI, C.,
GARMENDIA, A., KOLOVOS, D. S., DE LARA, J., AND TRUJILLO, S. On the
opportunities of scalable modeling technologies: An experience report on wind
turbines control applications development. Lecture Notes in Computer Science
10376 (2017), 300 – 315. Cited on pages 3, 4, and 43.

https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html


268 BIBLIOGRAPHY

[126] GONZALEZ-PEREZ, C., AND HENDERSON-SELLERS, B. A powertype-based
metamodelling framework. Software and Systems Modeling (SoSyM) 5, 1 (2006), 72
– 90. Cited on page 39.

[127] GRAY, J. Why do computers stop and what can be done about it? Tech. rep., Tandem
Computers, 1985. Cited on pages 206 and 219.

[128] GRÖNNIGER, H., KRAHN, H., RUMPE, B., SCHINDLER, M., AND VÖLKEL, S.
Text-based modeling. In Proceedings of the 4th International Workshop on Software
Language Engineering (2007). Cited on pages 54, 69, and 186.

[129] GROOTHUIS, M., FRIJNS, R., VOETEN, J., AND BROENINK, J. Concurrent design
of embedded control software. ECEASST (2009). Cited on pages 2 and 4.

[130] GUERRA, E., AND DE LARA, J. Towards automating the analysis of integrity
constraints in multi-level models. In Proceedings of the Workshop on Multi-Level
Modelling (MULTI) (2014), pp. 1 – 10. Cited on pages 37 and 98.

[131] GUY, C., COMBEMALE, B., DERRIEN, S., STEEL, J. R. H., AND JÉZÉQUEL,
J.-M. On model subtyping. In Proceedings of the European Conference on Model
Driven Architecture: Foundations and Applications (ECMFA) (2012), pp. 400 – 415.
Cited on page 89.

[132] HANCOCK, C. M. Real-Time Programming and the Big Ideas of Computational Lit-
eracy. PhD thesis, Massachusetts Institute of Technology, 2003. Cited on page 186.

[133] HAREL, D. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program. 8, 3 (1987), 231–274. Cited on pages 14, 15, 119, 122, and 208.

[134] HAREL, D., AND GERY, E. Executable object modeling with statecharts. IEEE
Computer 30, 7 (1997), 31 – 42. Cited on page 93.

[135] HAREL, D., AND NAAMAD, A. The STATEMATE semantics of Statecharts. ACM
Transactions on Software Engineering Methodology 5, 4 (1996), 293–333. Cited on
page 15.

[136] HAREL, D., AND RUMPE, B. Meaningful modeling: What’s the semantics of
“semantics”? Computer 37, 10 (2004), 64–72. Cited on page 11.

[137] HENDERSON-SELLERS, B. Bridging metamodels and ontologies in software en-
gineering. Journal of Systems and Software 84, 2 (2011), 301 – 313. Cited on
page 38.

[138] HENDERSON-SELLERS, B., CLARK, T., AND GONZALEZ-PEREZ, C. On the
search for a level-agnostic modelling language. In Proceedings of the International
Conference on Advanced Information Systems Engineering (2013), pp. 240 – 255.
Cited on pages 40 and 109.

[139] HENDERSON-SELLERS, B., AND GONZALEZ-PEREZ, C. A comparison of four
process metamodels and the creation of a new generic standard. Information and
Software Technology 47, 1 (2005), 49–65. Cited on page 42.

[140] HENKLER, S., AND HIRSCH, M. A multi-paradigm modeling approach for recon-
figurable mechatronic systems. In Proceedings of the International Workshop on
MPM (2006), pp. 15–25. Cited on page 3.

[141] HEROLD, S. Compliance between architecture and design models of component-
based systems. ECEASST (2010). Cited on page 4.

[142] HERRMANNSDÖRFER, M., AND HUMMEL, B. Library concepts for model reuse.



BIBLIOGRAPHY 269

In Proceedings of the Workshop on Language Descriptions Tools and Applications
(LDTA) (2009), pp. 121 – 134. Cited on page 90.

[143] HOPCROFT, J. E., MOTWANI, R., AND ULLMAN, J. D. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006. Cited on pages 20, 165, and 169.

[144] HWANG, M. H. X-S-Y. https://code.google.com/p/x-s-y/, 2012.
Cited on pages 29 and 144.

[145] IUGAN, L. G., NICOLESCU, G., AND O’CONNOR, I. Modeling and formal
verification of a passive optical network on chip behaviour. ECEASST (2009). Cited
on page 3.

[146] JEFFERSON, D. R. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (1985),
404–425. Cited on page 209.

[147] JIANG, J., AND SYSTÄ, T. A pattern-based approach to manage model references.
ECEASST (2009). Cited on pages 4 and 5.

[148] JOHNSON, G., GROSS, M. D., HONG, J., AND YI-LUEN DO, E. Computational
support for sketching in design: a review. Foundations and Trends in Human-
Computer Interaction 2, 1 (2009), 1 – 93. Cited on page 37.

[149] JOUAULT, F., ALLILAIRE, F., BÉZIVIN, J., AND KURTEV, I. ATL: A model
transformation tool. Science of Computer Programming 72, 1-2 (2008), 31–39.
Cited on page 45.

[150] JUKŠS, M., VERBRUGGE, C., ELAASAR, M., AND VANGHELUWE, H. Scope
in model transformations. Software & Systems Modeling (2016), 1–26. Cited on
page 202.

[151] JUKŠS, M., VERBRUGGE, C., VARRÓ, D., AND VANGHELUWE, H. Dynamic
scope discovery for model transformations. In Proceedings of the International
Conference on Software Language Engineering (SLE) (2014), pp. 302–321. Cited
on page 41.

[152] KANTNER, D. Specification and implementation of a deep OCL dialect. Master’s
thesis, University of Mannheim, 2014. Cited on page 41.

[153] KAPPEL, G., LANGER, P., RETZSCHITZEGGER, W., SCHWINGER, W., AND
WIMMER, M. Model transformation by-example: A survey of the first wave.
Lecture Notes in Computer Science 7260 (2012), 197–215. Cited on page 40.

[154] KELLY, S., AND TOLVANEN, J.-P. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley, 2008. Cited on pages 9, 44, 45, 164, 187, and 204.

[155] KEMPER, P. A trace-based visual inspection technique to detect errors in simulation
models. In 2007 Winter Simulation Conference (2007), pp. 747–755. Cited on
page 215.

[156] KENNEL, B. A Unified Framework for Multi-Level Modeling. PhD thesis, University
of Mannheim, 2012. Cited on page 97.

[157] KENT, S. Model Driven Engineering. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2002, pp. 286–298. Cited on page 1.

[158] KIM, S., SARJOUGHIAN, H. S., AND ELAMVAZHUTHI, V. DEVS-Suite: a simula-
tor supporting visual experimentation design and behavior monitoring. In Proceed-
ings of the 2009 Spring Simulation Multiconference (2009), pp. 161:1–161:7. Cited

https://code.google.com/p/x-s-y/


270 BIBLIOGRAPHY

on pages 29 and 143.
[159] KIM, T., LEE, C., CHRISTENSEN, E., AND ZEIGLER, B. System entity structuring

and model base management. IEEE Transactions on Systems, Man and Cybernetics
20, 5 (Sept. 1990), 1013–1024. Cited on page 144.

[160] KITCHIN, D., QUARK, A., COOK, W. R., AND MISRA, J. The orc programming
language. In Formal Techniques for Distributed Systems, Joint 11th IFIP WG 6.1
International Conference FMOODS 2009 and 29th IFIP WG 6.1 International
Conference FORTE 2009. (2009), pp. 1–25. Cited on page 122.

[161] KLEPPE, A. A language description is more than a metamodel. In Proceedings
of the International Conference on Software Language Engineering (SLE) (2007).
Cited on pages 10 and 189.

[162] KOFMAN, E., LAPADULA, M., AND PAGLIERO, E. PowerDEVS: A DEVS-Based
Environment for Hybrid System Modeling and Simulation. Tech. rep., School of
Electronic Engineering, Universidad Nacional de Rosario, 2003. Cited on page 144.

[163] KOLOVOS, D. S. Establishing correspondences between models with the epsilon
comparison language. Lecture Notes in Computer Science 5562 (2009), 146–157.
Cited on pages 41 and 81.

[164] KOLOVOS, D. S., PAIGE, R. F., AND POLACK, F. A. C. The Epsilon Object
Language (EOL). In Proceedings of the European Conference on Model Driven
Architecture - Foundations and Applications (ECMFA) (2006), pp. 128 – 142. Cited
on pages 41 and 98.

[165] KOLOVOS, D. S., PAIGE, R. F., AND POLACK, F. A. C. Merging models with the
Epsilon Merging Language (EML). Lecture Notes in Computer Science 4199 (2006),
215–229. Cited on pages 41 and 81.

[166] KOLOVOS, D. S., PAIGE, R. F., AND POLACK, F. A. C. The Epsilon Transforma-
tion Language. Lecture Notes in Computer Science 5063 (2008), 46–60. Cited on
page 45.

[167] KOVÁCS, M., VARRÓ, D., AND GÖNCZY, L. Formal analysis of BPEL workflows
with compensation by model checking. Comput. Syst. Sci. Eng. 23, 5 (2008). Cited
on page 122.

[168] KUHN, A., MURPHY, G. C., AND THOMPSON, C. A. An exploratory study of
forces and frictions affecting large-scale model-driven development. In Proceedings
of the 15th International Conference on Model Driven Engineering Languages and
Systems (Berlin, Heidelberg, 2012), MODELS’12, Springer-Verlag, pp. 352–367.
Cited on page 165.

[169] KÜHNE, T. Matters of (meta-)modeling. Software and Systems Modeling (SoSyM) 5
(2006), 369 – 385. Cited on pages 11, 35, 36, 40, 48, 90, and 187.

[170] KÜHNE, T. On model compatibility with referees and contexts. Software and
Systems Modeling (SoSyM) 12, 3 (2013), 475 – 488. Cited on page 90.

[171] KÜHNE, T., MEZEI, G., SYRIANI, E., VANGHELUWE, H., AND WIMMER, M.
Explicit transformation modeling. In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems (MoDELS) (2009), pp. 240 –
255. Cited on pages 40, 44, 94, and 159.

[172] KURTEV, I., BÉZIVIN, J., JOUAULT, F., AND VALDURIEZ, P. Model-based DSL



BIBLIOGRAPHY 271

frameworks. In Proceedings of the Symposium on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA) (2006), pp. 602 – 616. Cited on
page 43.

[173] LAMO, Y., WANG, X., MANTZ, F., MACCAULL, W., AND RUTLE, A. DPF
Workbench: A diagrammatic multi-layer domain specific (meta-) modelling envi-
ronment. Computer and Information Science, Studies in Computational Intelligence
429 (2012), 37–52. Cited on pages 43 and 89.

[174] LATOMBE, F., CRÉGUT, X., COMBEMALE, B., DEANTONI, J., AND PANTEL,
M. Weaving concurrency in eXecutable Domain-Specific Modeling Languages. In
Proceedings of the International Conference on Software Language Engineering
(SLE) (2015), pp. 125 – 136. Cited on pages 5, 41, and 99.

[175] LEDECZI, A., MAROTI, M., BAKAY, A., AND KARSAI, G. The Generic Modeling
Environment. In Proceedings of International Symposium on Intelligent Signal
Processing (WISP) (2001). Cited on pages 43, 89, 90, and 92.

[176] LEE, E. The problem with threads. Tech. rep., University of California at Berkeley,
2006. Cited on pages 3 and 120.

[177] LEVENDOVSZKY, T., LENGYEL, L., MEZEI, G., AND CHARAF, H. A system-
atic approach to metamodeling environments and model transformation systems
in VMTS. In Proceedings of the International Workshop on Graph-Based Tools
(GraBaTs) (2004), pp. 65 – 75. Cited on pages 63 and 90.

[178] LEWIS, B. Debugging backwards in time. arXiv preprint cs/0310016, September
(2003), 225–235. Cited on page 208.

[179] LI, X., VANGHELUWE, H., LEI, Y., SONG, H., AND WANG, W. A testing
framework for DEVS formalism implementations. In Proceedings of the 2011
Spring Simulation Multiconference (2011), pp. 183–188. Cited on pages xxxv, 143,
145, and 146.

[180] LIEBERMAN, H., AND FRY, C. Bridging the gulf between code and behavior in
programming. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (1995), pp. 480–486. Cited on page 165.

[181] LIENHARD, A., G ÎRBA, T., AND NIERSTRASZ, O. Practical object-oriented
back-in-time debugging. In ECOOP 2008 – Object-Oriented Programming (2008),
pp. 592–615. Cited on page 209.

[182] LINDEMAN, R. T., KATS, L. C. L., AND VISSER, E. Declaratively defining domain-
specific language debuggers. In Proceedings of the 10th International Conference on
Generative Programming and Component Engineering (2011), pp. 127–136. Cited
on page 164.

[183] LÓPEZ-FERNÁNDEZ, J. J., CUADRADO, J. S., GUERRA, E., AND DE LARA, J.
Example-driven meta-model development. Software and Systems Modeling 14, 4
(2013), 1323–1347. Cited on page 49.

[184] LÚCIO, L., ABID, S. B., RAHMAN, S., ARAVANTINOS, V., KUESTNER, R.,
AND HARWARDT, E. Process-aware model-driven development environments. In
Proceedings of MODELS 2017 Satellite Event (2017), pp. 405–411. Cited on page 4.

[185] LÚCIO, L., MUSTAFIZ, S., DENIL, J., MEYERS, B., AND VANGHELUWE, H. The
formalism transformation graph as a guide to model driven engineering. Tech. Rep.
SOCS-TR2012-1, School of Computer Science, McGill University, 2012. Cited on



272 BIBLIOGRAPHY

pages 3, 4, and 124.
[186] LÚCIO, L., MUSTAFIZ, S., DENIL, J., VANGHELUWE, H., AND JUKŠS, M.

FTG+PM: An integrated framework for investigating model transformation chains.
Lecture Notes in Computer Science 7916 (2013), 182–202. Cited on pages 31, 42,
124, and 179.

[187] MADIOT, F., AND PAGANELLI, M. Eclipse sirius demonstration. In Proceedings of
the MoDELS 2015 Demo and Poster Session (2015), pp. 9–11. Cited on page 204.

[188] MALEKI, M. M., WOODBURY, R. F., GOLDSTEIN, R., BRESLAV, S., AND KHAN,
A. Designing DEVS visual interfaces for end-user programmers. Simulation 91, 8
(2015), 715–734. Cited on page 215.

[189] MANNADIAR, R., AND VANGHELUWE, H. Debugging in domain-specific mod-
elling. In Software Language Engineering, B. Malloy, S. Staab, and M. Brand, Eds.,
vol. 6563 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
pp. 276–285. Cited on pages 187 and 215.

[190] MANZANARES, C. C., CUADRADO, J. S., AND DE LARA, J. Building MDE cloud
services with DISTIL. In Proceedings of the International Workshop on Model-
Driven Engineering on and for the Cloud (2015), pp. 19–24. Cited on pages 90
and 109.

[191] MARÓTI, M., KECSKÉS, T., KERESKÉNYI, R., BROLL, B., VÖLGYESI,
P., JURÁCZ, L., LEVENDOVSZKY, T., AND LÉDECZI, A. Next generation
(meta)modeling: web- and cloud-based collaborative tool infrastructure. In Pro-
ceedings of the Workshop on Multi-Paradigm Modeling (MPM) (2014), pp. 41 – 60.
Cited on pages 64, 89, 90, and 93.

[192] MARÓTI, M., KERESKÉNYI, R., KECSKÉS, T., VÖLGYESI, P., AND ÁKOS
LÉDECZI. Online Collaborative Environment for Designing Complex Computational
Systems. Procedia Computer Science 29, 0 (2014), 2432 – 2441. 2014 International
Conference on Computational Science. Cited on pages 43, 44, 46, 64, and 232.

[193] MCDIRMID, S. Living it up with a live programming language. In Proceedings of
OOPSLA ’07 (2007), pp. 623–638. Cited on pages 186 and 187.

[194] MCDIRMID, S. Usable live programming. In Proceedings of Onward! 2013 (2013),
pp. 53–61. Cited on pages 166, 186, and 187.

[195] MELLOR, S. J., AND BALCER, M. J. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley Professional, 2002. Cited on page 187.

[196] MEYERS, B., DESHAYES, R., LUCIO, L., SYRIANI, E., VANGHELUWE, H., AND
WIMMER, M. ProMoBox: a framework for generating domain-specific property
languages. In Proceedings of the International Conference on Software Language
Engineering (SLE) (2014), pp. 1 – 20. Cited on page 5.

[197] MEYERS, B., AND VANGHELUWE, H. A framework for evolution of modelling
languages. Science of Computer Programming 76, 12 (2011), 1223 – 1246. Cited on
pages 37, 168, and 188.

[198] MOODY, D. The “physics” of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineering
35, 6 (2009), 756–779. Cited on pages 13 and 49.

[199] MORIN, B., BARAIS, O., JEZEQUEL, J.-M., FLEUREY, F., AND SOLBERG, A.



BIBLIOGRAPHY 273

Models@ run.time to support dynamic adaptation. Computer 42, 10 (2009), 44–51.
Cited on page 187.

[200] MOSTERMAN, P. J., AND VANGHELUWE, H. Computer automated multi-paradigm
modeling: An introduction. Simulation 80, 9 (Sept. 2004), 433–450. Cited on pages
1, 3, 19, 32, and 50.

[201] MULLER, P.-A., FLEUREY, F., AND JÉZÉQUEL, J.-M. Weaving Executability into
Object-oriented Meta-languages. In Proceedings of the 8th International Conference
on Model Driven Engineering Languages and Systems (Berlin, Heidelberg, 2005),
MoDELS’05, Springer-Verlag, pp. 264–278. Cited on page 41.

[202] MULLER, P.-A., FLEUREY, F., AND JÉZÉQUEL, J.-M. Weaving executability into
Object-Oriented meta-languages. In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems (MoDELS) (2005), pp. 264 –
278. Cited on page 93.

[203] MURATA, T. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE (1989), pp. 541 – 580. Cited on pages 14 and 24.

[204] MUSTAFIZ, S., DENIL, J., LÚCIO, L., AND VANGHELUWE, H. The FTG+PM
framework for multi-paradigm modelling: an automotive case study. In Proceedings
of the 6th International Workshop on Multi-Paradigm Modeling (2012), pp. 13–18.
Cited on pages 33 and 124.

[205] MUSTAFIZ, S., AND VANGHELUWE, H. Explicit modelling of Statechart simulation
environments. In Summer Simulation Multiconference (2013), Society for Computer
Simulation International (SCS), pp. 445 – 452. Toronto, Canada. Cited on pages
128 and 215.

[206] MUZY, A., INNOCENTI, E., AIELLO, A., SANTUCCI, J.-F., AND WAINER, G.
Specification of discrete event models for fire spreading. Simulation 81, 2 (2005),
103–117. Cited on page 114.

[207] MUZY, A., AND WAINER, G. Comparing simulation methods for fire spreading
across a fuel bed. In Proceedings of AIS’2002 (2002), pp. 219–224. Cited on
page 143.

[208] NIKOUKARAN, J., HLUPIC, V., AND PAUL, R. J. Criteria for simulation software
evaluation. In Proceedings of the 1998 Winter Simulation Conference (1998), pp. 399–
406. Cited on pages xxxv and 145.

[209] NOTOWIDIGDO, M., AND MILLER, R. C. Off-line sketch interpretation. In AAAI
Fall Symposium on Making Pen-Based Interaction Intelligent and Natural (2004),
pp. 120–126. Cited on page 196.

[210] NUTARO, J. J. adevs. http://www.ornl.gov/˜1qn/adevs/, 2015. Cited
on pages 29 and 143.

[211] OAKES, B. Optimizing simulink models. Tech. Rep. CS-TR-2014.5, McGill
University, 2014. Cited on page 23.

[212] ODELL, J. J. Power types. Journal of Object-Oriented Programming 7, 2 (1994), 8
– 12. Cited on page 39.

[213] OSLC COMMUNITY. OSLC - Open services for lifecycle collaboration core specifi-
cation version 3.0. http://open-services.net, 2017. Cited on page 122.

[214] OSTERWEIL, L. Software processes are software too. In Proceedings of the

http://www.ornl.gov/~1qn/adevs/


274 BIBLIOGRAPHY

9th International Conference on Software Engineering (1987), ICSE ’87, IEEE
Computer Society Press, pp. 2–13. Cited on pages 42 and 124.

[215] OUYANG, C., VERBEEK, E., VAN DER AALST, W., BREUTEL, S., DUMAS, M.,
AND TER HOFSTEDE, A. H. M. Formal semantics and analysis of control flow in
WS-BPEL. Sci. Comput. Program. 67, 2-3 (2007), 162–198. Cited on page 122.

[216] PALANIAPPAN, S., SAWHNEY, A., AND SARJOUGHIAN, H. S. Application of
the DEVS Framework in Construction Simulation. In Proceedings of the 38th
Conference on Winter Simulation (2006), Winter Simulation Conference, pp. 2077–
2086. Cited on page 144.

[217] PAP, Z., MAJZIK, I., PATARICZA, A., AND SZEGI, A. Methods of checking general
safety criteria in uml statechart specifications. RELIABILITY ENGINEERING &
SYSTEM SAFETY 87 (2005), 89 – 107. Cited on page 128.

[218] PAVLETIC, D., VOELTER, M., RAZA, S. A., KOLB, B., AND KEHRER, T. Ex-
tensible debugger framework for extensible languages. Lecture Notes in Computer
Science 9111 (2015), 33–49. Cited on page 164.

[219] PETRE, M. Why looking isn’t always seeing: Readership skills and graphical
programming. Communications of the ACM 38, 6 (1995), 33–44. Cited on pages 13,
54, 69, and 186.

[220] POP, A., SJÖLUND, M., ASGHAR, A., FRITZSON, P., AND FRANCESCO, C.
Static and Dynamic Debugging of Modelica Models. In Proceedings of the 9th
International Modelica Conference (2012), pp. 443–454. Cited on page 215.

[221] POSSE, E. Modelling and simulation of dynamic structure discrete-event systems.
PhD thesis, School of Computer Science, McGill University, Oct. 2008. Cited on
page 146.

[222] POTHIER, G., AND TANTER, E. Back to the future: Omniscient debugging. IEEE
Software 26, 6 (2009), 78–85. Cited on pages 208 and 209.

[223] POTHIER, G., TANTER, E., AND PIQUER, J. Scalable omniscient debugging. In
Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (2007), OOPSLA ’07, ACM, pp. 535–552.
Cited on pages 209, 216, and 219.

[224] PREISS, B. R., LOUCKS, W. M., AND MACINTYRE, I. D. Effects of the checkpoint
interval on time and space in time warp. ACM Trans. Model. Comput. Simul. 4, 3
(1994), 223–253. Cited on pages 211 and 217.

[225] QAMAR, A., HERZIG, S., AND PAREDIS, C. J. J. A domain-specific language for
dependency management in model-based systems engineering. In Proceedings of
the International Workshop on Multi-Paradigm Modeling (2013), pp. 7–16. Cited on
pages 5 and 42.

[226] QUESNEL, G., DUBOZ, R., RAMAT, E., AND TRAORÉ, M. K. VLE: a multimod-
eling and simulation environment. In Proceedings of the 2007 Summer Simulation
Multiconference (2007), pp. 367–374. Cited on pages 29 and 144.

[227] RABBI, F., LAMO, Y., YU, I. C., AND KRISTENSEN, L. M. A diagrammatic
approach to model completion. In Proceedings of the Workshop on the Analysis of
Model Transformations (AMT) (2015), pp. 56 – 65. Cited on page 37.

[228] RABBI, F., LAMO, Y., YU, I. C., AND KRISTENSEN, L. M. WebDPF: A web-based



BIBLIOGRAPHY 275

metamodelling and model transformation environment. In Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development
(2016), pp. 87–98. Cited on pages 43 and 89.

[229] REGGIO, G., LEOTTA, M., AND RICCA, F. Who knows/uses what of the uml: A
personal opinion survey. Lecture Notes in Computer Science 8767 (2014), 149–165.
Cited on page 130.

[230] REINHARTZ-BERGER, I., STURM, A., AND CLARK, T. Exploring multi-level
modeling relations using variability mechanisms. In Proceedings of the Workshop
on Multi-Level Modelling (MULTI) (2015), pp. 23 – 32. Cited on pages 40 and 90.

[231] REITER, T., RETSCHITZEGGER, W., AND ALTMANNINGER, K. Think global, act
local: Implementing model management with domain-specific integration languages.
In Proceedings of the International Workshop on MPM (2006), pp. 51–66. Cited on
page 42.

[232] RENSINK, A. The GROOVE simulator: A tool for state space generation. In
Applications of Graph Transformations with Industrial Relevance (AGTIVE) (2004),
Lecture Notes in Computer Science, pp. 479–485. Cited on page 44.

[233] ROHR, M., BOSKOVIC, M., GIESECKE, S., AND HASSELBRING, W. Model-driven
development of self-managing software systems. In Proceedings of the Models at
run.time workshop co-located with the ACM/IEEE 9th International Conference
MODELS 2006 (2006). Cited on page 187.

[234] ROLLAND, C. A comprehensive view of process engineering. In Proceedings of
the International Conference on Advanced Information Systems Engineering (1998),
pp. 1–24. Cited on page 42.

[235] ROMERO, J. R., RIVERA, J. E., DURÁN, F., AND VALLECILLO, A. Formal
and tool support for Model Driven Engineering with Maude. Journal of Object
Technology 6, 9 (2007), 187 – 207. Cited on pages 36, 90, and 93.

[236] RÖNNGREN, R., AND AYANI, R. Adaptive checkpointing in time warp. SIGSIM
Simul. Dig. 24, 1 (1994), 110–117. Cited on pages 211 and 217.

[237] ROSE, L., GUERRA, E., DE LARA, J., ETIEN, A., KOLOVOS, A., AND PAIGE,
R. Genericity for model management operations. Software and Systems Modeling
(SoSyM) 12, 1 (2013), 201 – 219. Cited on pages 5, 90, and 109.

[238] ROSE, L. M., PAIGE, R. F., KOLOVOS, D. S., AND POLACK, F. A. C. The Epsilon
Generation Language. Lecture Notes in Computer Science 5095 (2008), 1–16. Cited
on page 41.

[239] ROSSINI, A., DE LARA, J., GUERRA, E., RUTLE, A., AND WOLTER, U. A
formalisation of deep metamodelling. Formal Aspects of Computing 26, 6 (2014),
1115–1152. Cited on page 90.

[240] ROUSSEAU, A., HALBACH, S., MICHAELS, L., SHIDORE, N., KIM, N., KIM,
N., KARBOWSKI, D., AND KROPINSKI, M. Electric drive vehicle development
and evaluation using system simulation. In Proceedings of the 19th IFAC World
Congress (2014), pp. 7886–7891. Cited on page 2.

[241] RUSSELL, N., VAN DER AALST, W., TER HOFSTEDE, A., AND WOHED, P. On
the suitability of UML 2.0 activity diagrams for business process modelling. In
Proceedings of the Asia-Pacific Conference on Conceptual Modelling (2006), pp. 95–
104. Cited on page 42.



276 BIBLIOGRAPHY

[242] SAFA, L. The practice of deploying DSM report from a japanese appliance maker
trenches. In Proceedings of the OOPSLA Workshop on Domain-Specific Modeling
(2006), pp. 185–196. Cited on pages 2 and 4.

[243] SALAY, R., CHECHICK, M., EASTERBROOK, S., DISKIN, Z., MCCORMICK, P.,
NEJATI, S., SABETZADEH, M., AND VIRIYAKATTIYAPORN, P. An Eclipse-based
tool framework for software model management. In Proceedings of the Symposium
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)
(2007), pp. 55 – 59. Cited on pages 42, 45, and 90.

[244] SALAY, R., AND CHECHIK, M. Supporting agility in MDE through modeling
language relaxation. In Proceedings of the Workshop on Extreme Modeling (2013),
pp. 21 – 30. Cited on page 37.

[245] SALAY, R., AND CHECHIK, M. Supporting agility in MDE through modeling
language relaxation. In Proceedings of the Workshop on Extreme Modeling co-
located with ACM/IEEE 16th International Conference on Model Driven Engineering
Languages & Systems (MoDELS 2013). (2013), pp. 20–27. Cited on page 97.

[246] SALAY, R., KOKALY, S., DI SANDRO, A., AND CHECHIK, M. Enriching meg-
amodel management with collection-based operators. In Proceedings of MoDELS
2015 (2015), pp. 236–245. Cited on pages 42 and 109.

[247] SALAY, R., MYLOPOULOS, J., AND EASTERBROOK, S. Managing models through
macromodeling. In Proceedings of the International Conference on Automated
Software Engineering (ASE) (2008), pp. 447 – 450. Cited on page 100.

[248] SALAY, R., ZSCHALER, S., AND CHECHIK, M. Transformation reuse: What is the
intent? In Proceedings of AMT@MoDELS (2015), pp. 1–7. Cited on page 40.

[249] SANDEWALL, E. Programming in an interactive environment: The “lisp” experience.
ACM Comput. Surv. 10, 1 (1978), 35–71. Cited on page 186.

[250] SARJOUGHIAN, H., AND ZEIGLER, B. DEVSJava: Basis for a DEVS-based
Collaborative M&S Environment. SIMULATION 30 (1998), 29–36. Cited on
page 143.

[251] SARJOUGHIAN, H. S., AND CHEN, Y. Standardizing DEVS models: an endogenous
standpoint. In Proceedings of the 2011 Spring Simulation Multiconference (2011),
pp. 266–273. Cited on page 29.

[252] SCHIFFELERS, R., ALBERTS, W., AND VOETEN, J. Model-based specification,
analysis and synthesis of servo controllers for lithoscanners. In Proceedings of
the 6th International Workshop on Multi-Paradigm Modeling (MPM 2012) (2012),
pp. 55–60. Cited on page 2.

[253] SCHIFFELERS, R. R., THEUNISSEN, R. J., VAN BEEK, D. A., AND ROODA, J. E.
Model-based engineering of supervisory controllers using CIF. ECEASST 21 (2009).
Cited on page 2.

[254] SCHMIDT, K. LoLA: A low level analyser. Lecture Notes in Computer Science 1825
(2000), 465–474. Cited on page 54.

[255] SCHUSTER, A., AND SPRINKLE, J. Synthesizing executable simulations from
structural models of component-based systems. ECEASST (2009). Cited on page 3.

[256] SEN, S., BAUDRY, B., AND VANGHELUWE, H. Towards domain-specific model
editors with automatic model completion. Simulation 3, 12 (2010), 109 – 126. Cited



BIBLIOGRAPHY 277

on pages 35, 36, and 37.
[257] SENDALL, S., AND KOZACZYNSKI, W. Model transformation: The heart and soul

of model-driven software development. IEEE Softw. 20, 5 (2003), 42–45. Cited on
pages 3, 15, and 130.

[258] SEO, C., ZEIGLER, B. P., COOP, R., AND KIM, D. DEVS modeling and simulation
methodology with MS4Me software. In Proceedings of the 2013 Spring Simulation
Multiconference (2013), pp. 33:1–33:8. Cited on pages 29 and 144.

[259] SHANG, H., AND WAINER, G. A model of virus spreading using Cell-DEVS. In
Computational Science ICCS 2005, vol. 3515 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2005, pp. 145–201. Cited on page 143.

[260] SILVER, B., AND RICHARD, B. BPMN method and style, vol. 2. Cody-Cassidy
Press Aptos, 2009. Cited on page 122.

[261] SIX, J. M., AND TOLLIS, I. G. Circular drawings of biconnected graphs. In
Algorithm Engineering and Experimentation (1999), pp. 57–73. Cited on page 191.

[262] SLOANE, A., ROBERTS, M., BUCKLEY, S., AND MUSCAT, S. Monto: A disinte-
grated development environment. In Proceedings of the International Conference on
Software Language Engineering (2014), pp. 211–220. Cited on pages 189 and 205.

[263] SORENSEN, A., AND GARDNER, H. Programming with time: cyber-physical
programming with Impromptu. In Proceedings of Onward! 2010 (2010), pp. 822–
834. Cited on page 187.

[264] SOTTET, J.-S., AND BIRI, N. JSMF: a Javascript flexible modelling framework.
In Proceedings of the 2nd Workshop on Flexible Model Driven Engineering (2016),
pp. 42–51. Cited on page 97.

[265] SOUSA, V., AND SYRIANI, E. An expeditious approach to modeling ide interaction
design. In Joint Proceedings of the 3rd International Workshop on the Globalization
Of Modeling Languages and the 9th International Workshop on Multi-Paradigm
Modeling (2015), pp. 52–61. Cited on page 194.

[266] STEEL, J., AND JÉZÉQUEL, J.-M. Typing relationships in MDA. In Proceedings of
the European Workshop on Model Driven Architecture (MDA) (2004), pp. 154 – 159.
Cited on pages 35, 37, and 89.

[267] STEEL, J., AND JÉZÉQUEL, J.-M. Model typing for improving reuse in Model-
Driven Engineering. In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MoDELS) (2005), pp. 84 – 96. Cited
on pages 35, 36, and 89.

[268] STEWART, D., AND CHAKRAVARTY, M. M. Dynamic applications from the ground
up. In Proceedings of the 2005 ACM SIGPLAN workshop on Haskell (2005), pp. 27–
38. Cited on page 187.

[269] STIEHL, V. Process-Driven Applications with BPMN. Springer, 2014. Cited on
page 121.

[270] STOLLON, N. On-Chip Instrumentation, 1st ed. Springer, 2011. Cited on page 219.
[271] SYRIANI, E., AND VANGHELUWE, H. A modular timed graph transformation

language for simulation-based design. Software and Systems Modeling (SoSyM) 12,
2 (2013), 387–414. Cited on page 15.

[272] SYRIANI, E., VANGHELUWE, H., AND AL MALLAH, A. Modelling and simulation-



278 BIBLIOGRAPHY

based design of a distributed DEVS simulator. In Proceedings of the Winter Simula-
tion Conference (2011), pp. 3007–3021. Cited on page 153.

[273] SYRIANI, E., VANGHELUWE, H., MANNADIAR, R., HANSEN, C., VAN MIERLO,
S., AND ERGIN, H. AToMPM: a web-based modeling environment. In Joint
Proceedings of MoDELS’13 Invited Talks, Demonstration Session, Poster Session,
and ACM Student Research Competition (2013), pp. 21 – 25. Cited on pages 43, 44,
89, 90, 91, 100, 109, 203, and 208.

[274] SZÁRNYAS, G., IZSÓ, B., RÁTH, I., HARMATH, D., BERGMANN, G., AND
VARRÓ, D. IncQuery-D: A distributed incremental model query framework in the
cloud. In Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MoDELS) (2014), pp. 653 – 669. Cited on pages 41, 101,
and 202.

[275] SZTIPANOVITS, J., KARSAI, G., AND FRANKE, H. Model-integrated program
synthesis environment. In IEEE Symposium on Engineering of Computer Based
Systems (1996). Cited on page 3.

[276] TANIMOTO, S. L. VIVA: A visual language for image processing. Journal of Visual
Languages and Computing 1 (1990), 127–139. Cited on pages 164, 186, and 187.

[277] TAROMIRAD, M., MATRAGKAS, N., AND PAIGE, R. F. Towards a multi-domain
model-driven traceability approach. In Proceedings of the International Workshop
on MPM (2013), pp. 27–36. Cited on pages 4 and 5.

[278] TEWOLDEBERHAN, T. W., VERBRAECK, A., VALENTIN, E., AND BARDONNET,
G. An evaluation and selection methodology for discrete-event simulation software.
In Proceedings of the 2002 Winter Simulation Conference (Dec. 2002), pp. 67–75.
Cited on pages xxxv and 145.

[279] THEISZ, Z., AND MEZEI, G. An algebraic instantiation technique illustrated by
multilevel design patterns. In Proceedings of the Workshop on Multi-Level Modelling
(MULTI) (2015), pp. 53 – 62. Cited on pages 35, 89, 90, 93, and 97.

[280] TISI, M., DOUENCE, R., AND WAGELAAR, D. Lazy evaluation for OCL. In
Proceedings of the International Workshop on OCL and Textual Modeling (2015),
pp. 46–61. Cited on page 41.

[281] TOLVANEN, J.-P., AND KELLY, S. Defining domain-specific modeling languages
to automate product derivation: Collected experiences. Lecture Notes in Computer
Science 3714 (2005), 198 – 209. Cited on page 3.

[282] UJHELYI, Z., BERGMANN, G., HEGEDÜS, A., HORVÁTH, A., IZSÓ, B., RÁTH,
I., SZATMÁRI, Z., AND VARRÓ, D. EMF-IncQuery: An integrated development
environment for live model queries. Science of Computer Programming 98, 1 (2015),
80–99. Cited on pages 41 and 202.

[283] UNGAR, D., AND SMITH, R. B. SELF: the power of simplicity. In Proceed-
ings of the Symposium on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA) (1987), pp. 227 – 242. Cited on pages 92 and 186.

[284] VAN DER AALST, W. Business process management as the ”killer app” for petri
nets. Software and System Modeling 14, 2 (2015), 685–691. Cited on page 121.

[285] VAN DER AALST, W., AND TER HOFSTEDE, A. YAWL: yet another workflow
language. Inf. Syst. 30, 4 (2005), 245–275. Cited on page 122.



BIBLIOGRAPHY 279

[286] VAN DER AALST, W., TER HOFSTEDE, A., KIEPUSZEWSKI, B., AND BARROS, A.
Workflow patterns. Distributed and Parallel Databases 14, 1 (2003), 5–51. Cited on
page 121.

[287] VAN DER AALST, W. M. P., VAN HEE, K. M., TER HOFSTEDE, A. H. M.,
SIDOROVA, N., VERBEEK, H. M. W., VOORHOEVE, M., AND WYNN, M. T.
Soundness of workflow nets: classification, decidability, and analysis. Formal
Aspects of Computing 23, 3 (2011), 333–363. Cited on page 130.

[288] VAN DER CRUYSSE, J. Just-in-time compiler for the modelverse, 2017. Cited on
page 226.

[289] VAN DER STORM, T. Semantic deltas for live DSL environments. In Proceedings of
the 1st International Workshop on Live Programming (Piscataway, NJ, USA, 2013),
LIVE ’13, IEEE Press, pp. 35–38. Cited on pages 164, 165, and 187.

[290] VAN DER STRAETEN, R. Towards a methodology for semantics specification of
domain-specific models through properties. ECEASST (2011). Cited on page 4.

[291] VAN GORP, P., SCHIPPERS, H., DEMEYER, S., AND JANSSENS, D. Students can
get excited about formal methods: a model-driven course on petri-nets, metamodels
and graph grammars. In MoDELS Educators’ Symposium (2007), pp. 1–10. Cited
on page 3.

[292] VAN GORP, P., SCHIPPERS, H., DEMEYER, S., AND JANSSENS, D. Transformation
techniques can make students excited about formal methods. Information & Software
Technology 50, 12 (2008), 1295–1304. Cited on page 3.

[293] VAN MIERLO, S. Explicitly modelling model debugging environments. In Proceed-
ings of the ACM Student Research Competition at MODELS 2015 co-located with
the ACM/IEEE 18th International Conference MODELS 2015 (2015), pp. 24–29.
Cited on pages 132, 187, and 208.

[294] VAN MIERLO, S. A Multi-Paradigm Modelling Approach for Engineering Model
Debugging Environments. PhD thesis, University of Antwerp, 2018. Cited on pages
164 and 208.

[295] VAN MIERLO, S., BARROCA, B., VANGHELUWE, H., SYRIANI, E., AND KÜHNE,
T. Multi-level modelling in the modelverse. In Proceedings of the Workshop on
Multi-Level Modelling (MULTI) (2014), pp. 83 – 92. Cited on pages 38, 90, and 104.

[296] VAN MIERLO, S., VAN TENDELOO, Y., BARROCA, B., MUSTAFIZ, S., AND VAN-
GHELUWE, H. Explicit modelling of a Parallel DEVS experimentation environment.
In Proceedings of the 2015 Spring Simulation Multiconference (2015), SpringSim
’15, Society for Computer Simulation International, pp. 860–867. Cited on pages
144 and 208.

[297] VAN MIERLO, S., VAN TENDELOO, Y., DÁVID, I., MEYERS, B., GE-
BREMICHAEL, A., AND VANGHELUWE, H. A multi-paradigm approach for mod-
elling service interactions in model-driven engineering processes. In Proceedings
of Mod4Sim (2018), Mod4Sim, part of the Spring Simulation Multi-Conference,
pp. 565–576. Cited on page 155.

[298] VAN MIERLO, S., VAN TENDELOO, Y., MEYERS, B., EXELMANS, J., AND
VANGHELUWE, H. SCCD: SCXML extended with class diagrams. In Proceedings
of the Workshop on Engineering Interactive Systems with SCXML (2016), pp. 2:1–2:6.
Cited on pages 26, 69, 70, 119, 122, 148, and 202.



280 BIBLIOGRAPHY

[299] VAN MIERLO, S., VAN TENDELOO, Y., MEYERS, B., AND VANGHELUWE,
H. Domain-Specific Modelling for Human-Computer Interaction. Springer, 2017,
pp. 435 – 463. Cited on page 189.

[300] VAN MIERLO, S., VAN TENDELOO, Y., AND VANGHELUWE, H. Debugging
Parallel DEVS. SIMULATION 93, 4 (2017), 285–306. Cited on pages 187, 208,
and 219.

[301] VAN MIERLO, S., AND VANGHELUWE, H. Adding rule-based model transformation
to modelling languages in MetaEdit+. ECEAST 54 (2012). Cited on page 45.

[302] VAN ROZEN, R., AND VAN DER STORM, T. Towards live domain-specific languages:
from text differencing to adapting models at run time. Software & Systems Modeling
(2017), 1–18. Cited on pages 164 and 187.

[303] VAN TENDELOO, Y. Activity-aware DEVS simulation. Master’s thesis, University
of Antwerp, Antwerp, Belgium, 2014. Cited on pages 109 and 219.

[304] VAN TENDELOO, Y. Foundations of a multi-paradigm modelling tool. In MoDELS
ACM Student Research Competition (2015), pp. 52–57. Cited on pages 121, 155,
and 182.

[305] VAN TENDELOO, Y., BARROCA, B., VAN MIERLO, S., AND VANGHELUWE, H.
Modelverse specification. Tech. rep., University of Antwerp, 2017. Cited on page 63.

[306] VAN TENDELOO, Y., VAN MIERLO, S., AND VANGHELUWE, H. Time- and
space-conscious omniscient debugging of parallel DEVS. In Proceedings of the
2017 Symposium on Theory of Modeling and Simulation - DEVS (Apr. 2017), TM-
S/DEVS ’17, part of the Spring Simulation Multi-Conference, Society for Computer
Simulation International, pp. 1001 – 1012. Cited on pages 212 and 219.

[307] VAN TENDELOO, Y., AND VANGHELUWE, H. Activity in PythonPDEVS. In
Proceedings of ACTIMS 2014 (2014). Cited on page 109.

[308] VAN TENDELOO, Y., AND VANGHELUWE, H. The modular architecture of the
Python(P)DEVS simulation kernel. In Proceedings of the 2014 Symposium on
Theory of Modeling and Simulation - DEVS (2014), pp. 387–392. Cited on pages
121, 143, 144, 208, and 215.

[309] VAN TENDELOO, Y., AND VANGHELUWE, H. PythonPDEVS: a distributed Parallel
DEVS simulator. In Proceedings of the 2015 Spring Simulation Multiconference
(2015), SpringSim ’15, Society for Computer Simulation International, pp. 844–851.
Cited on pages 143 and 219.

[310] VAN TENDELOO, Y., AND VANGHELUWE, H. An overview of PythonPDEVS.
In JDF 2016 – Les Journées DEVS Francophones – Théorie et Applications (Apr.
2016), C. W. RED, Ed., Éditions Cépaduès, pp. 59 – 66. Cited on page 143.

[311] VAN TENDELOO, Y., AND VANGHELUWE, H. Teaching the fundamentals of the
modelling of cyber-physical systems. In Proceedings of the 2016 Symposium on
Theory of Modeling and Simulation - DEVS (Apr. 2016), TMS/DEVS ’16, part of the
Spring Simulation Multi-Conference, Society for Computer Simulation International,
pp. 646 – 653. Cited on page 3.

[312] VAN TENDELOO, Y., AND VANGHELUWE, H. Classic DEVS modelling and
simulation. In Proceedings of the 2017 Winter Simulation Conference (Dec. 2017),
WSC 2017, IEEE, pp. 644 – 656. Cited on page 27.



BIBLIOGRAPHY 281

[313] VAN TENDELOO, Y., AND VANGHELUWE, H. An evaluation of DEVS simulation
tools. SIMULATION 93, 2 (2017), 103–121. Cited on pages xxxv, 143, 145, and 146.

[314] VAN TENDELOO, Y., AND VANGHELUWE, H. Explicitly modelling the type/in-
stance relation. In Proceedings of MODELS 2017 Satellite Event (Sept. 2017),
Ceur-WS, pp. 393 – 398. Cited on pages 102, 108, and 154.

[315] VAN TENDELOO, Y., AND VANGHELUWE, H. Increasing performance of a DEVS
simulator by means of computational resource usage ”activity” models. SIMULA-
TION 93, 12 (2017), 1045 – 1061. Cited on page 109.

[316] VAN TENDELOO, Y., AND VANGHELUWE, H. The Modelverse: a tool for multi-
paradigm modelling and simulation. In Proceedings of the 2017 Winter Simulation
Conference (Dec. 2017), WSC 2017, IEEE, pp. 944 – 955. Cited on pages 3, 50,
121, 147, and 182.

[317] VAN TENDELOO, Y., AND VANGHELUWE, H. Extending the DEVS formalism
with initialization information. ArXiv e-prints (2018). Cited on pages xxxv, 29, 145,
and 146.

[318] VAN TENDELOO, Y., AND VANGHELUWE, H. Unifying model- and screen sharing.
In Proceedings of the 2018 WETICE conference (June 2018), IEEE, pp. 127–132.
Cited on page 205.

[319] VANGHELUWE, H. DEVS as a common denominator for multi-formalism hybrid
systems modelling. Proceedings of the IEEE International Symposium on Computer-
Aided Control System Design (CACSD) (2000), 129–134. Cited on page 109.

[320] VANGHELUWE, H., RIEGELHAUPT, D., MUSTAFIZ, S., DENIL, J., AND VAN
MIERLO, S. Explicit modelling of a CBD experimentation environment. In Pro-
ceedings of the 2014 Symposium on Theory of Modeling and Simulation - DEVS
(2014), TMS/DEVS ’14, part of the Spring Simulation Multi-Conference, Society
for Computer Simulation International, pp. 379–386. Cited on page 187.

[321] VANGHELUWE, H. L., VANSTEENKISTE, G. C., AND KERCKHOFFS, E. J. Sim-
ulation for the future: Progress of the Esprit basic research working group 8467.
In Proceedings of the European Simulation Symposium (ESS) (1996), pp. XXIX –
XXXIV. Cited on page 3.

[322] VANHERPEN, K., DENIL, J., DÁVID, I., DE MEULENAERE, P., MOSTERMAN,
P. J., TÖRNGREN, M., QAMAR, A., AND VANGHELUWE, H. Ontological reasoning
for consistency in the design for Cyber-Physical Systems. In Proceedings of the
Workshop on Cyber-Physical Production Systems (CPPS) (2016), pp. 9:1 – 9:8. Cited
on page 38.

[323] VARRÓ, D., AND PATARICZA, A. Generic and meta-transformations for model trans-
formation engineering. In Proceedings of the Conference on the Unified Modeling
Language (UML) (2004), pp. 290 – 304. Cited on pages 90 and 98.

[324] VARRÓ, G., FRIEDL, K., AND VARRÓ, D. Adaptive graph pattern matching for
model transformations using model-sensitive search plans. Electronic Notes in
Theoretical Computer Science 152 (2006), 191–205. Cited on page 41.

[325] VIGNAGA, A., JOUAULT, F., BASTARRICA, M. C., AND BRUNELIÈRE, H. Typing
in model management. Lecture Notes in Computer Science 5563 (2009). Cited on
page 109.

[326] VOELTER, M., SIEGMUND, J., BERGER, T., AND KOLB, B. Towards user-friendly



282 BIBLIOGRAPHY

projectional editors. In Proceedings of the International Conference on Software
Language Engineering (2014), pp. 41–61. Cited on page 205.

[327] VON DETTEN, M., HEINZEMANN, C., PLATENIUS, M. C., RIEKE, J., TRAVKIN,
D., AND HILDEBRANDT, S. Story diagrams-syntax and semantics. Tech. Rep.
tr-ri-12-324, University of Paderborn, 2012. Cited on page 122.

[328] WAINER, G. CD++: a toolkit to develop DEVS models. Software: Practice and
Experience 32, 13 (2002), 1261–1306. Cited on pages 29 and 143.

[329] WAINER, G., AND GIAMBIASI, N. Application of the Cell-DEVS Paradigm for
Cell Spaces Modelling and Simulation. SIMULATION 76, 1 (2001), 22–39. Cited
on page 143.

[330] WEERAWARANA, S., CURBERA, F., LEYMANN, F., STOREY, T., AND FERGUSON,
D. F. Web services platform architecture: SOAP, WSDL, WS-policy, WS-addressing,
WS-BPEL, WS-reliable messaging and more. Prentice Hall PTR, 2005. Cited on
page 122.

[331] WEGNER, P. Concepts and paradigms of Object-Oriented programming. SIGPLAN
Object-Oriented Programming Systems (OOPS) Messenger 1, 1 (1990), 7 – 87. Cited
on page 93.

[332] WIMMER, M., KUSEL, A., RETSCHITZEGGER, W., SCHÖNBÖCK, J.,
SCHWINGER, W., CUADRADO, J. S., GUERRA, E., AND DE LARA, J. Reusing
model transformations across heterogeneous metamodels. ECEASST (2011). Cited
on page 41.

[333] WU, H., GRAY, J., AND MERNIK, M. Grammar-driven generation of domain-
specific language debuggers. Software: Practice and Experience 38, 10 (2008),
1073–1103. Cited on page 164.

[334] XIA, Y., LIU, Y., LIU, J., AND ZHU, Q. Modeling and performance evaluation of
BPEL processes: A stochastic-petri-net-based approach. IEEE Trans. Systems, Man,
and Cybernetics, Part A 42, 2 (2012), 503–510. Cited on page 122.

[335] ZAYTSEV, V., AND BAGGE, A. H. Parsing in a broad sense. In Proceedings of
the International Conference on Model Driven Engineering Languages and Systems
(MoDELS) (2014), pp. 50 – 67. Cited on page 205.

[336] ZEIGLER, B., SEO, C., AND KIM, D. System entity structures for suites of
simulation models. International Journal of Modeling, Simulation, and Scientific
Computing 4 (2013), 3:1–3:11. Cited on page 144.

[337] ZEIGLER, B. P. Multi-faceted Modelling and Discrete-Event Simulation. Academic
Press, 1984. Cited on pages xxx and 48.

[338] ZEIGLER, B. P., PRAEHOFER, H., AND KIM, T. G. Theory of Modeling and
Simulation, second ed. Academic Press, 2000. Cited on pages 14, 27, 120, and 143.

[339] ZEIGLER, B. P., SEO, C., COOP, R., AND KIM, D. Creating Suites of Models with
System Entity Structure: Global Warming Example. In Proceedings of the 2013
Spring Simulation Multiconference (2013), pp. 32:1–32:8. Cited on page 144.

[340] ZELKOWITZ, M. V. Reversible execution. Communications of the ACM 16, 9
(1973), 566–566. Cited on page 216.

[341] ZELLAG, K., AND VANGHELUWE, H. Modelling- and simulation-based design of
multi-tier systems. ECEASST (2011). Cited on page 3.



BIBLIOGRAPHY 283

[342] ZELLER, A. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. Cited on page 164.

[343] ZHANG, Y., AND XU, B. A survey of semantic description frameworks for pro-
gramming languages. SIGPLAN Notices 39, 3 (2004), 14–30. Cited on page 15.

[344] ZHAO, Q., RABBAH, R., AMARASINGHE, S., RUDOLPH, L., AND WONG, W.-F.
How to do a million watchpoints: Efficient debugging using dynamic instrumentation.
Lecture Notes in Computer Science 4959 (2008). Cited on page 219.


	Introduction
	Motivation
	Usefulness of MPM
	Tool Support
	Use of MPM Techniques
	Foundation for MPM

	Challenges and Contributions

	Background
	Domain-Specific Modelling
	Example
	Terminology
	Syntax
	Semantics

	Process Modelling
	Multi-Paradigm Modelling
	Formalisms
	Finite State Automata
	Causal Block Diagrams
	Petri Nets
	Statecharts
	Statecharts + Class Diagrams
	Discrete Event System Specification
	Formalism Transformation Graph + Process Model


	State of the Art
	Language Engineering
	Instantiation and Conformance
	Model Finding and Type Inference
	Multiple Dimensions
	Multi-Level Modelling

	Activities
	Model Transformations
	Procedural Code

	Processes
	Megamodelling
	Modelling as a Service
	Tool Comparison

	Modelverse Specification
	Types of Users
	Modeller
	Language Engineer
	Modelverse Developer

	Requirements
	Multi-Paradigm Modelling
	Kernel
	Repository
	Non-Functional Requirements

	Architecture
	Modelverse Interface
	Modelverse Kernel
	Modelverse State


	Modelverse Development using MPM
	Graphical User Interface (GUI)
	Motivation
	Model
	Evaluation
	Link to Requirements

	Wrapper
	Motivation
	Model
	Evaluation
	Link to Requirements

	Network Protocols
	Motivation
	Model
	Evaluation
	Link to Requirements

	Core Library
	Motivation
	Model
	Evaluation
	Link to Requirements

	Formalism Transformation Graph
	Motivation
	Model
	Evaluation
	Link to Requirements

	Conformance Algorithm
	Motivation
	Model
	Evaluation
	Related Work
	Link to Requirements

	Physical Type Model
	Motivation
	Model
	Evaluation
	Related Work
	Dynamic PTM Optimization using Activity Models
	Link to Requirements

	Service Orchestration
	Motivation
	Model
	Evaluation
	Related Work
	Link to Requirements

	FTG+PM Enactment
	Motivation
	Model
	Evaluation
	Related Work
	Link to Requirements

	Action Language
	Motivation
	Model
	Evaluation
	Link to Requirements

	Task Management
	Motivation
	Model
	Evaluation
	Link to Requirements

	Performance
	Motivation
	Background: DEVS Modelling and Simulation
	Model
	Evaluation
	Related Work
	Link to Requirements


	Modelverse as a Foundation for MPM
	Power Window Case Study
	Requirement 1: Domain-Specific Modelling
	Requirement 2: Activities
	Requirement 3: Process Modelling
	Requirement 4: Multi-User
	Requirement 5: Multi-Service
	Requirement 6: Multi-Interface
	Requirement 7: Model Sharing
	Requirement 8: Access Control
	Requirement 9: Megamodelling
	Requirement 10: Portability

	Live Modelling
	Motivation
	Background
	Running Examples
	Approach
	Evaluation
	Related Work

	Concrete Syntax
	Motivation
	Approach
	Evaluation
	Discussion
	Related Work

	Modelverse Debugging
	Motivation
	Background: DEVS Debugging
	Model
	Evaluation
	Related Work


	Conclusions
	Future Work

	Modelverse State Specification
	Data representation
	CRUD interface
	Create
	Read
	Update
	Delete


	Action Language Specification
	Documentation
	If condition
	While loop
	Break
	Continue
	Access
	Resolve
	Assign
	Function Call
	Return
	Constant
	Declare
	I/O
	Control Instructions

	Primitives


