Modelica Library for Spacecraft Resource Budgeting

Niccolo Cymbalist
Chahe Adourian (supervisor)
Introduction

Resource budgeting is one of the preliminary design phases in which system level requirements are specified.
- Efficiently achieved using rapid prototyping

We implemented the library in Modelica because it is well suited to hybrid, multidisciplinary modeling, it is modular and easy to use
Presentation Overview

- **Why?**
 - I will demonstrate why this tool is needed and the advantages it offers

- **What?**
 - I will explain what the tool consists of

- **How?**
 - I will show how parts of this tool were built and examples of complete spacecraft built using this tool
Rapid prototyping offers (some of) the advantages of a full simulator while remaining flexible and easy to use:
- Time dependent simulation
- Accuracy
- Ease of assembly, use and modification

SpacecraftLib allows the user to easily customize the level of complexity of the model to suit the task at hand.

There are currently no widely available, easy to use rapid prototyping libraries for spacecraft.
What? (1)

- Multidisciplinary tool, 4 sections dealing with:
 - Power
 - Command and data handling
 - Mechanics
 - Orbital mechanics

- The user can follow the interactions between the different subsystems
What? (2)

- *Device* concept. Multiple subsystems are modeled together in a *device* which:
 - Consumes power
 - Generates data
 - Responds to commands
 - Has mass and inertia

- The idea behind this was to model the physical device as opposed to the behaviour of the device
Devices are combined into a complete spacecraft which:

- Is initialized into an orbit
- Can be commanded to take pictures, transmit data, change attitude and/or orbit etc...
- Interacts with the ground station

The spacecraft and GS models can be easily modified in order to test and compare different designs/specifications.
How?

- **DataBudget section**
 - Data treated as a sort of physical quantity
 - Data may be generated, stored, compressed, transmitted
 - Bit rates, memory capacities are set by the user

- **Command Network**
 - ‘Plug and Play’ behavior
 - Built with a combination of C and Modelica
 - The user writes a list of time tagged commands in a text file which are executed during the simulation (we will upgrade this system to a GUI eventually)
How? (command network)

Initialization
- Command list imported
- Devices get numeric address
- Device name & address mapped

Send command
- Numeric address appended to command
- Commands filter through network

Receive command
- Command body converted to signal
- Command executed at $t=\text{time tag}$
Examples of spacecraft built using SpacecraftLib
Thank you for attending!