
Devslang and DEVS operational semantics

Ernesto Posse

25th August 2004



Outline

✘ Introduction

✘ Devslang

✘ Formal operational semantics

✘ Future work

1



Introduction

✘ DEVS: “Discrete EVent System specification formalism”

✘ A formalism for modelling and simulating timed, discrete-event, composite,
reactive/interactive systems.

2



Introduction

✘ Timed: A system “runs” over continuous time

3



Introduction

✘ Timed: A system “runs” over continuous time

✘ Discrete-event: In any given closed time-interval, only a finite number of
events occur

4



Introduction

✘ Timed: A system “runs” over continuous time

✘ Discrete-event: In any given closed time-interval, only a finite number of
events occur

✘ Composite: a system can be a collection of interconnected subsytems.

5



Introduction

✘ Timed: A system “runs” over continuous time

✘ Discrete-event: In any given closed time-interval, only a finite number of
events occur

✘ Composite: a system can be a collection of interconnected subsytems.

✘ Reactive: a system can always react to external stimuli

6



Introduction

✘ Timed: A system “runs” over continuous time

✘ Discrete-event: In any given closed time-interval, only a finite number of
events occur

✘ Composite: a system can be a collection of interconnected subsytems.

✘ Reactive: a system can always react to external stimuli

✘ Interactive: a system interacts with its environment (or components interact
with each other)

7



DEVS

� Two types of DEVS components:

– Atomic (or behavioural)
– Coupled (or structural)

8



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

9



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values

10



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values

11



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states

12



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states
– δint : S � S is an internal transition function

13



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states
– δint : S � S is an internal transition function
– λ : S � Y

� � � �

is an output function

14



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states
– δint : S � S is an internal transition function
– λ : S � Y

� � � �

is an output function
– τ : S � � � � �

0 � ∞

�

is a time-advance function

15



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states
– δint : S � S is an internal transition function
– λ : S � Y

� � � �

is an output function
– τ : S � � � � �

0 � ∞

�

is a time-advance function
– δext : Q � X � S is an external transition function, where

Q
de f� � �

s � e

��

s � Sand0

�

e

� τ
�

s
� �

16



DEVS

� An atomic DEVS component is a tuple

�

X � Y � S � δint

� δext

� λ � τ � s0
�

where:

– X is a set of possible input values
– Y is a set of possible output values
– S is a (possibly uncountable) set of states
– δint : S � S is an internal transition function
– λ : S � Y

� � � �

is an output function
– τ : S � � � � �

0 � ∞

�

is a time-advance function
– δext : Q � X � S is an external transition function, where

Q
de f� � �

s � e

��

s � Sand0

�

e

� τ
�

s
� �

– s0

� S is an initial state

17



DEVS

S

T

s2

s2

� δint �

s1

�

s1

t1 � t0

� τ

�

s1

�

t0

δint

λ

�

s1

�

18



DEVS

S

T

s2

s2

� δint �

s1

�

s1

t1 � t0

� τ

�

s1

�

t0

δint

δext

s3
s3

� δext � �

s1 � e
�

� x

�

t
e

19



DEVS

A

B

C

B1 B2

B3

D
C2

C1

E

20



DEVS

� A coupled DEVS component is a tuple

�

X � Y � N � C � in f l � Z � sel

�

where

– X is a set of possible input values
– Y is a set of possible output values
– N is a set of component names
– C is a set of components (atomic or coupled) indexed by N
– in f l : N � 2N is an influencer function
– Z is a family of transfer functions:

Z

� �

Zi � j : Yi

� X j

�

i � j � N and i � in f l

�

j

� �

� �

Z �� � � � k : X � Xk
� �� � 	 � in f l

�

k

� �

� �

Zk � �� � � : Yk
� Y

�
k � in f l

� �� � 	 � �

– sel : 2N � N is a selection function

21



Devslang

� Devslang is a language to represent DEVS models

� We need some representation for DEVS components:

– ...to exchange models between different DEVS simulators
– ...to be able to describe DEVS models in a more user-friendly fashion
– ...to serve as the target representation for models in other formalisms
– ...to take advantage of compiler technologies to generate efficient simula-

tors

22



Devslang

� Components:

component Name(parameters) =
inports a,b,c
outports d,e
...

end

23



Devslang

� Atomic components:

component Name(parameters) =
inports a,b,c
outports d,e
atomic

...
end

end

24



Devslang

� Coupled components:

component Name(parameters) =
inports a,b,c
outports d,e
coupled

...
end

end

25



Devslang

� Atomic components:

atomic
mode-definition-1
...
mode-definition-n
initial mode-invocation

end

26



Devslang

� Mode definitions:

mode name1(params1) =
...

end

� Mode invocation

name1(args)

27



Devslang

� Mode definitions:

mode name1(params1) =
external-transitions
after time-expr -> mode-invocation
out output-record

end

28



Devslang

� Mode definitions:

mode name1(params1) =
condition-1 -> mode-invocation-1,
...
condition-n -> mode-invocation-n
after time-expr -> mode-invocation
out output-record

end

29



Devslang

� Variables that can be used in expressions:

– input port names
– parameters (mode and component)
– elapsed
– infinity

30



Devslang: Example 1

component Generator(period,value) =
inports none
outports y
atomic
mode active(next) =
after next -> active(period)
out {y: value}

end
initial active(period)

end
end

31



Devslang: Example 1

component Generator(period,value) =
inports x
outports y
atomic
mode active(next) =
any -> active(next - elapsed)
after next -> active(period)
out {y: value}

end
initial active(period)

end
end

32



Devslang

� Configuration:

�

state � time

�

� Event:

�
� � �

t � v

�

or � � � �

t � v

�

� Trace of execution: Sequence of configurations

33



Devslang: Example 1

A = Generator(2,“a”)
State Last trans Event

active(2) 0
int(2,“a”)

active(2) 2
int(4,“a”)

active(2) 4
ext(4.5,x)

active(1.5) 4.5
int(6,“a”)

active(2) 6
...

34



Devslang: Example 2

component Store(response time) =
inports x
outports y
atomic
mode receiving(next, data) =
x = ("put", value) -> receiving(next-elapsed, value)
x = "get" -> responding(response time, data)
any -> receiving(next-elapsed, data)
after infinity -> any
out nothing

end

-- continues below

35



mode responding(next, data) =
any -> responding(next - elapsed, data)
after next -> receiving(infinity, data)
out {y: data}

end
initial receiving(infinity, nothing)

end
end

36



Devslang: Example 3

component Processor(response time, function) =
inports x
outports y
atomic
mode receiving(next) =
any -> busy(response time, x)
after next -> receiving(response time)
out nothing

end

-- continues below

37



mode busy(next, job) =
any -> busy(next - elapsed, job)
after next -> receiving(response time)
out {y: function(job)}

end
initial receiving(response time)

end
end

38



Devslang

� Atomic components:

coupled
component-instantiation-1
...
component-instantiation-n
connections
connection-1
...
connection-m

select expr
end

39



Devslang

� Component instantiation:

instance-name = component-name(arguments)

or

instance-name = component-definition

� Connection

from outport to inport trans expr

40



Devslang: Example 4

component SimpleCoupled(function) =
inports none
outports y
coupled

G = Generator(1.0,“a”)
P = Processor(2.5,function)

connections
from G.y to P.x trans G.y + “b”
from P.y to y trans P.y

select P
end

end

41



Formal operational semantics

� We want a semantics for Devslang and DEVS itself which is...

– abstract : independent of specific simulation algorithms and engines, and
for which we can apply formal methods

– ...but not too abstract: close enough to the general idea of simula-
tion/execution.

42



Formal operational semantics

� Labelled transition systems (LTS)!

� A labelled transition system is a tuple

�

S � A �

� �

where:

– S is a set of states
– A is a set of labels, representing actions, conditions or events
– � �

S � A � S is a transition relation. We write s
a� � s

�

to mean

�

s � a � s

� � � �

� LTS are not FSA!

43



Formal operational semantics

� Each DEVS component A determines an LTS M

�

A

�

�
�

ConfigsA � EvtsA �

�

A

�

where

– ConfigsA is the set of all A-configurations of the form
�

s � t

�

– EvtsA is the set of all A-events of the form

�
� � �

t � v
�

or � � � �

t � v

�

44



Formal operational semantics

� ...and (for atomic components) �

A is the relation which satisfies:

– Internal transitions (AIT):

�

s � tl

�

� � � �

t � λ

�

s

� �

� � � � � �

A

�

δint

�

s

�

� t

�

if t � tl

� τ

�

s

�

– External transitions (AET):

�

s � tl

�

�� � �

t � x

�

� � � � �

A

�

δext

� �

s � t � tl

�

� x

�

� t

�

if t

�

tl

�

τ

�

s

�

45



Formal operational semantics

� ...and (for coupled components) �

A is the relation which satisfies:

� External transition (CET):

�

ρ � tl

�

�� � �

t � x

�

� � � � �

B

�

ρ

�
� t

�

if

1. for each n � N such that �� � 	 � in f l

�

n

�

and xn

� � �

, ρ

�

n

�

�� � �

t � xn

�

� � � � �

n ρ

� �

n

�

,

where xn
de f� Z �� � � � n

�

x

�

,
2. and for all n � N such that �� � 	 � � in f l

�

n
�

or xn

� �

, ρ

�

n

�

� ρ

� �

n

�

, where

xn
de f� Z �� � � � n

�

x

�

46



Formal operational semantics

...and

� Internal transition (CIT):

�

ρ � tl

�

� � � �

t � y

�

� � � �

B

�

ρ

�
� t

�

if

1. ρ

�

i

� �

� � � �

t � y

� �

� � � � �

i

� ρ

� �

i

� �

,

2. for each n � N such that i

� � in f l

�

n

�

and n
� � �� � 	

, ρ

�

n

�

�� � �

t � xn

�

� � � � �

n ρ

� �

n

�

where xn

� Zi

� � n

�

y

� �

,
3. for all n � N such that n

� � i

�

and i

� �� in f l
�

n
�

, ρ

�

n

�

� ρ

� �

n

�

,
4. and y � Zi

� � �� � �
�

y

� �

if i

� � in f l

� �� � 	 �

or y � �

if i

� �� in f l

� �� � 	 �

� where i

� � sel

�

imm

�

ρ

� �

, and imm
�

ρ
�

is the set of imminent components that
is, of components which have a minimal time-to-next-transition.

47



Formal operational semantics

� Behavioural equivalence: having the “same” behaviour (bisimilarity)

� If A and B are behaviourally equivalent, then

– an observer should not be able to distinguish between them...
– ...therefore we should be able to replace one by the other in any context

� An equivalence relation � is called a congruence if it is preserved by all
contexts:

– If A � B then C

�

A

�

� C

�

B

�

for all contexts C

� � �

48



Formal operational semantics

� Compositionality : the meaning of a system is determined only by the mean-
ing of its parts

� Why is compositionality important:

– Simplicity of semantics
– Efficiency of execution, simulation, analysis, optimization (example: sep-

arate compilation)

49



Formal operational semantics

� An operational semantics is compositional w.r.t. a behavioural equivalence,
if the equivalence is a congruence

� If A � B but C

�

A

� �
� C

�

B

�

then the meaning of C

� � �

is not determined only by
its parts

50



Formal operational semantics

Theorem. Strong bisimilarity is a congruence for DEVS

51



Future work

✘ Devslang interpreter/simulator

✘ Types

✘ Fully-abstract semantics

✘ Possible application of model-checking techniques

✘ Statecharts-to-DEVS transformation

✘ Variable-structure systems

52


