Devslang and DEVS operational semantics

Ernesto Posse

25th August 2004

留 McGill MSDL

Outline

X Introduction

X Devslang

X Formal operational semantics

X Future work

Introduction

X DEVS: "Discrete EVent System specification formalism"
\mathbf{X} A formalism for modelling and simulating timed, discrete-event, composite, reactive/interactive systems.

Introduction

X Timed: A system "runs" over continuous time

Introduction

X Timed: A system "runs" over continuous time
\mathbf{x} Discrete-event: In any given closed time-interval, only a finite number of events occur

Introduction

X Timed: A system "runs" over continuous time
\mathbf{x} Discrete-event: In any given closed time-interval, only a finite number of events occur

X Composite: a system can be a collection of interconnected subsytems.

Introduction

X Timed: A system "runs" over continuous time
\mathbf{x} Discrete-event: In any given closed time-interval, only a finite number of events occur

X Composite: a system can be a collection of interconnected subsytems.
\mathbf{X} Reactive: a system can always react to external stimuli

Introduction

X Timed: A system "runs" over continuous time

X Discrete-event: In any given closed time-interval, only a finite number of events occur

X Composite: a system can be a collection of interconnected subsytems.
X Reactive: a system can always react to external stimuli

X Interactive: a system interacts with its environment (or components interact with each other)

DEVS

- Two types of DEVS components:
- Atomic (or behavioural)
- Coupled (or structural)

DEVS

- An atomic DEVS component is a tuple $\left(X, Y, S, \delta^{i n t}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states
- $\delta^{\text {int }}: S \rightarrow S$ is an internal transition function

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states
- $\delta^{\text {int }}: S \rightarrow S$ is an internal transition function
$-\lambda: S \rightarrow Y \cup\{\perp\}$ is an output function

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states
- $\delta^{\text {int }}: S \rightarrow S$ is an internal transition function
- $\lambda: S \rightarrow Y \cup\{\perp\}$ is an output function
- $\tau: S \rightarrow \mathbb{R}^{+} \cup\{0, \infty\}$ is a time-advance function

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states
- $\delta^{\text {int }}: S \rightarrow S$ is an internal transition function
- $\lambda: S \rightarrow Y \cup\{\perp\}$ is an output function
- $\tau: S \rightarrow \mathbb{R}^{+} \cup\{0, \infty\}$ is a time-advance function
- $\delta^{\text {ext }}: Q \times X \rightarrow S$ is an external transition function, where $Q \stackrel{\text { def }}{=}\{(s, e) \mid s \in S$ and $0 \leq e \leq \tau(s)\}$

DEVS

- An atomic DEVS component is a tuple ($\left.X, Y, S, \delta^{\text {int }}, \delta^{e x t}, \lambda, \tau, s_{0}\right)$ where:
- X is a set of possible input values
- Y is a set of possible output values
- S is a (possibly uncountable) set of states
- $\delta^{\text {int }}: S \rightarrow S$ is an internal transition function
- $\lambda: S \rightarrow Y \cup\{\perp\}$ is an output function
- $\tau: S \rightarrow \mathbb{R}^{+} \cup\{0, \infty\}$ is a time-advance function
- $\delta^{\text {ext }}: Q \times X \rightarrow S$ is an external transition function, where $Q \stackrel{\text { def }}{=}\{(s, e) \mid s \in S$ and $0 \leq e \leq \tau(s)\}$
- $s_{0} \in S$ is an initial state

DEVS

留 McGill MSDL

DEVS

留 McGill MSDL

DEVS

長 McGill MSDL

DEVS

- A coupled DEVS component is a tuple (X, Y, N, C, infl,Z, sel $)$ where
- X is a set of possible input values
- Y is a set of possible output values
- N is a set of component names
- C is a set of components (atomic or coupled) indexed by N
- infl: $N \rightarrow 2^{N}$ is an influencer function
-Z is a family of transfer functions:

$$
\begin{aligned}
Z & \subseteq\left\{Z_{i, j}: Y_{i} \rightarrow X_{j} \mid i, j \in N \text { and } i \in \operatorname{infl} l(j)\right\} \\
& \cup\left\{Z_{\text {self }, k}: X \rightarrow X_{k} \mid \text { self } \in \operatorname{infl}(k)\right\} \\
& \cup\left\{Z_{k, \text { self }}: Y_{k} \rightarrow Y \mid k \in \operatorname{infl}(\text { self })\right\}
\end{aligned}
$$

- sel : $2^{N} \rightarrow N$ is a selection function

Devslang

- Devslang is a language to represent DEVS models
- We need some representation for DEVS components:
- ...to exchange models between different DEVS simulators
- ...to be able to describe DEVS models in a more user-friendly fashion
- ...to serve as the target representation for models in other formalisms
- ...to take advantage of compiler technologies to generate efficient simulators

Devslang

- Components:

```
component Name(parameters) =
    inports a,b,c
    outports d,e
end
```


Devslang

- Atomic components:

```
component Name(parameters) =
    inports a,b,c
    outports d,e
    atomic
    end
end
```


Devslang

- Coupled components:

```
component Name(parameters) =
    inports a,b,c
    outports d,e
    coupled
    end
end
```


Devslang

- Atomic components:
atomic
mode-definition-1
mode-definition-n
initial mode-invocation
end

Devslang

- Mode definitions:
mode name1 (params1) =
end
- Mode invocation
name1(args)

Devslang

- Mode definitions:

```
mode namel(paramsl) =
    external-transitions
    after time-expr -> mode-invocation
    out output-record
end
```


Devslang

- Mode definitions:

```
mode namel(paramsl) =
    condition-1 -> mode-invocation-1,
    condition-n -> mode-invocation-n
    after time-expr ->> mode-invocation
    out output-record
end
```


Devslang

- Variables that can be used in expressions:
- input port names
- parameters (mode and component)
- elapsed
- infinity

Devslang: Example 1

```
component Generator(period,value) =
    inports none
    outports y
        atomic
            mode active(next) =
                after next -> active(period)
            out {y: value}
        end
        initial active(period)
        end
end
```


Devslang: Example 1

```
component Generator(period,value) =
    inports x
    outports y
    atomic
        mode active(next) =
            any -> active(next - elapsed)
            after next -> active(period)
            out {y: value}
            end
            initial active(period)
        end
end
```


Devslang

- Configuration: (state, time)
- Event: $\operatorname{int}(t, v)$ or $\operatorname{ext}(t, v)$
- Trace of execution: Sequence of configurations

Devslang: Example 1

A = Generator (2,"a")

State	Last trans	Event
active (2)	0	
		int (2, "a")
active (2)	2	
	4	int (4, "a")
active (2)	4.5	
	6	int (6, "a")
active (1.5)		
active (2)		
...		

Devslang: Example 2

```
component Store(response_time) =
    inports x
    outports y
    atomic
        mode receiving(next, data) =
        x = ("put", value) }->\mathrm{ > receiving(next-elapsed, value)
        x = "get" -> responding(response_time, data)
        any -> receiving(next-elapsed, data)
        after infinity -> any
            out nothing
        end
    -- continues below
```

```
    mode responding(next, data) =
    any -> responding(next - elapsed, data)
    after next -> receiving(infinity, data)
    out {y: data}
        end
            initial receiving(infinity, nothing)
        end
end
```


Devslang: Example 3

```
component Processor(response_time, function) =
    inports x
    outports y
    atomic
        mode receiving(next) =
            any -> busy(response_time, x)
            after next -> receiving(response_time)
            out nothing
            end
            -- continues below
```

```
    mode busy(next, job) =
        any -> busy(next - elapsed, job)
        after next -> receiving(response_time)
        out {y: function(job)}
        end
            initial receiving(response_time)
        end
end
```


Devslang

- Atomic components:

```
coupled
    component-instantiation-1
    component-instantiation-n
    connections
        connection-1
            connection-m
        select expr
end
```


Devslang

- Component instantiation:

```
    instance-name = component-name(arguments)
or
instance-name = component-definition
```

- Connection

```
from outport to inport trans expr
```


Devslang: Example 4

```
component SimpleCoupled(function) =
    inports none
    outports y
    coupled
        G = Generator(1.0, "a")
        P = Processor(2.5,function)
    connections
            from G.y to P.x trans G.y + "b"
            from P.y to y trans P.y
        select P
        end
end
```


Formal operational semantics

- We want a semantics for Devslang and DEVS itself which is...
- abstract: independent of specific simulation algorithms and engines, and for which we can apply formal methods
- ...but not too abstract: close enough to the general idea of simulation/execution.

Formal operational semantics

- Labelled transition systems (LTS)!
- A labelled transition system is a tuple (S, A, \rightarrow) where:
- S is a set of states
- A is a set of labels, representing actions, conditions or events
- $\rightarrow \subseteq S \times A \times S$ is a transition relation. We write $s \xrightarrow{a} s^{\prime}$ to mean $\left(s, a, s^{\prime}\right) \in \rightarrow$
- LTS are not FSA!

Formal operational semantics

- Each DEVS component A determines an LTS $\mathcal{M}(A)=\left(\right.$ Configs $_{A}$, Evts $_{A}, \rightarrow_{A}$) where
- Configs ${ }_{A}$ is the set of all A-configurations of the form (s, t)
- $\mathbf{E v t s}_{A}$ is the set of all A-events of the form $\operatorname{int}(t, v)$ or ext (t, v)

Formal operational semantics

- ...and (for atomic components) \rightarrow_{A} is the relation which satisfies:
- Internal transitions (AIT): $\left(s, t_{l}\right) \xrightarrow{\text { int }(t, \lambda(s))_{A}}\left(\delta^{\text {int }}(s), t\right)$ if $t=t_{l}+\tau(s)$
- External transitions (AET): $\left(s, t_{l}\right) \xrightarrow{\text { ext }(t, x)}{ }_{A}\left(\delta^{e x t}\left(\left(s, t-t_{l}\right), x\right), t\right)$ if $t \leq t_{l}+$ $\tau(s)$

Formal operational semantics

- ...and (for coupled components) \rightarrow_{A} is the relation which satisfies:
- External transition (CET): $\left(\rho, t_{l}\right) \xrightarrow{\operatorname{ext}(t, x)}_{B}\left(\rho^{\prime}, t\right)$ if

1. for each $n \in N$ such that self $\in \operatorname{infl}(n)$ and $x_{n} \neq \perp, \rho(n) \xrightarrow{\operatorname{ext}\left(t, x_{n}\right)} \rho_{n}^{\prime}(n)$, where $x_{n} \stackrel{\text { def }}{=} Z_{\text {self }, n}(x)$,
2. and for all $n \in N$ such that self $\notin \operatorname{infl}(n)$ or $x_{n}=\perp, \rho(n)=\rho^{\prime}(n)$, where $x_{n} \stackrel{\text { def }}{=} Z_{\text {self }, n}(x)$

Formal operational semantics

...and

- Internal transition (CIT): $\left(\rho, t_{l}\right) \xrightarrow{\operatorname{int}(t, y)}{ }_{B}\left(\rho^{\prime}, t\right)$ if

1. $\rho\left(i^{*}\right) \xrightarrow{\operatorname{int}\left(t, y^{*}\right)}{ }_{i^{*}} \rho^{\prime}\left(i^{*}\right)$,
2. for each $n \in N$ such that $i^{*} \in \operatorname{infl}(n)$ and $n \neq \operatorname{self}, \rho(n) \xrightarrow{\operatorname{ext}\left(t, x_{n}\right)} \rho^{\prime}(n)$ where $x_{n}=Z_{i^{*}, n}\left(y^{*}\right)$,
3. for all $n \in N$ such that $n \neq i^{*}$ and $i^{*} \notin \operatorname{infl}(n), \rho(n)=\rho^{\prime}(n)$,
4. and $y=Z_{i^{*}, \text { self }}\left(y^{*}\right)$ if $i^{*} \in \operatorname{infl}$ (self) or $y=\perp$ if $i^{*} \notin \operatorname{infl}$ (self)

- where $i^{*}=\operatorname{sel}(\operatorname{imm}(\rho))$, and $\operatorname{imm}(\rho)$ is the set of imminent components that is, of components which have a minimal time-to-next-transition.

Formal operational semantics

- Behavioural equivalence: having the "same" behaviour (bisimilarity)
- If A and B are behaviourally equivalent, then
- an observer should not be able to distinguish between them...
- ...therefore we should be able to replace one by the other in any context
- An equivalence relation \sim is called a congruence if it is preserved by all contexts:
- If $A \sim B$ then $C[A] \sim C[B]$ for all contexts $C[-]$

Formal operational semantics

- Compositionality: the meaning of a system is determined only by the meaning of its parts
- Why is compositionality important:
- Simplicity of semantics
- Efficiency of execution, simulation, analysis, optimization (example: separate compilation)

Formal operational semantics

- An operational semantics is compositional w.r.t. a behavioural equivalence, if the equivalence is a congruence
- If $A \sim B$ but $C[A] \nsim C[B]$ then the meaning of $C[-]$ is not determined only by its parts

Formal operational semantics

Theorem. Strong bisimilarity is a congruence for DEVS

Future work

X Devslang interpreter/simulator
x Types
X Fully-abstract semantics
X Possible application of model-checking techniques
X Statecharts-to-DEVS transformation

X Variable-structure systems

