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Abstract

We show how Initial Value Problems can be solved using a quantization algorithm, and analyse various
properties of this approach. Quantization is the dual of discretization, in that the dependent variables’
space is partitioned (rather than the independent variable’s). The quantization approach is appealing as it
better matches the discrete-event simulation scheme than the discretization approach. First, a non-adaptive
quantization algorithm, expressed in the DEVS formalism and based on the Forward-Euler approximation,
is presented. We show that consistency as well as convergence are respected for autonomous systems, but
cannot be guaranteed for nonautonomous problems. Absolute-stability as it is usually defined is gen-
erally not achieved. We then introduce an adaptive quantization algorithm, which improves the overall
performance of its non-adaptive counterpart.

1 Introduction

As an alternative to the traditional discretization approach to solve Ordinary Differential Equation (ODE)
models, Zeigler [14] has proposed an approach based on a partitioning of the state space into several cells,
or quanta. The Discrete EVent system Specification (DEVS) formalism, first introduced by Zeigler [14] to
provide a rigourous common basis for discrete-event modelling and simulation, is a natural choice as the
target formalism for quantization as it captures the essence of discrete-event formalisms.

The work done in the field [7, 8, 2] has shown that quantization is a promising avenue. Rigourous
analysis of the various strategies, however, is limited.

We will limit ourselves here to Initial Value Problems (IVPs), which consist of an ODE together with
a set of initial conditions: �

ẋ � f � t � x �
x � tI ��� xI � (1)



where x is a column vector of length n (the order of the system), and f is a vector function. The system is
said to be autonomous if f does not depend explicitly on the independent variable t.

The exact solution to the problem is a function x : �	��
 n , defined and differentiable with respect to t
over some interval ���� tI � tF � of 
 . The approximate numerical solution X is a sequence [9]

X ����� xi � hi ���� i � 0 � 1 � ����� m � xi � 
 n � hi � ti � 1 � ti � � (2)

where hi are the timesteps, ti � tI � ∑i � 1
u � 0 hu.

This paper is organized as follows: in section 3 we present a quantization of the state space. In section 4
we first introduce a non-adaptive quantized approach to solve IVPs; we then proceed to study consistency,
convergence and absolute-stability of this approach in section 5. A simple adaptive quantized approach is
presented in section 6, and it is shown how the approach can be expressed in the DEVS formalism. We
begin in the following section by introducing the atomic-DEVS formalism.

2 The DEVS Formalism

Classic DEVS is an intrinsically sequential formalism first introduced by Zeigler [14], which allows for
the description of discrete-event system behaviour at two levels. At the lowest level, an atomic-DEVS
describes the autonomous behaviour of a discrete-event system as a sequence of deterministic transitions
between states as well as how it reacts to external inputs. At the higher level, a coupled-DEVS describes
a discrete-event system in terms of a network of coupled components, each an atomic- or coupled-DEVS
model.

Since in this article we will map an IVP onto an atomic-DEVS, we will only introduce this part of the
formalism.

An atomic-DEVS M is specified by a 7-tuple

M ��� X � Y � S � δint � δext � λ � ta � �
where:

X is the input set,
Y is the output set,
S is the partial state set,
δint : S � S is the internal transition function,
δext : Q  X � S is the external transition function, where

Q ����� s � e �"! s � S � 0 # e # ta � s � � is the total state set, where
e is the elapsed time since the last transition.

λ : S � Y is the output function,
ta : S ��
 �%$'& 0 � � ∞ ( is the time advance function.

There are no restrictions on the structure of the sets, which typically are product sets, i.e., S � S1  S2  )�)�)  Sn. The time base � is not mentioned explicitly and is continuous (i.e., 
 ). For a discrete-event
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model described by an atomic-DEVS M, the behaviour is uniquely determined by the initial total state� s0 � e0 � � Q and is obtained by means of the following iterative simulation procedure:

At any time t � � , the system is in some state s � S. If no external event occurs, the system will stay
in state s until the elapsed time e reaches ta � s � . The system then first produces the output value λ � s � and
subsequently makes a transition to state s *+� δint � s � . If an external event x � X occurs before e reaches ta � s � ,
the system interrupts its autonomous behaviour and instantaneously goes to state s *,� δext �-� s � e �.� x � .Thus,
the internal transition function dictates the system’s new state based on its old state in the absence of
external events. The external transition function dictates the system’s new state whenever an external
event occurs, based on this event x, the current state s and how long the system has been in this state, e.
After both types of transitions, the elapsed time e is reset to 0.

Note that ta � s � can take on the values 0 and � ∞. In the first case, the system stays in state s for a time
so short that no external event can intervene, and we say that s is a transitory state. In the latter case, the
system stays in state s forever unless an external event occurs, and we say that s is a passive state.

3 Quantization

The well-known discretization approaches to solve ODEs are based on a partitioning of the time domain.
In the approach studied here, “quantization” is interpreted in very general terms as a tessellation of the
state space. The reader is referred to [12] for an alternative definition.

Our quantization scheme is based on a regular tessellation of the space 
 . The quantization P is
determined by two parameters: the quanta size D / 0, and the quanta phase ρ, subject to the constraint
0 # ρ 0 D (refer to Figure 1). Let the Quanta Interfaces (QIs) be the zeros of the harmonic function

sin 1 π
D
� x � ρ �32 �

The QIs are then given by Dk � ρ, where k �54 is the quantum index. From this we define a quantum dk
as the interval

dk ��� x �� x � 
6� Dk � ρ # x 0 D � k � 1 � � ρ �7�
In this scheme, we note that the origin is always an element of d0. We finally define the quantization of 

as P ��� dk �� k �%48� .

To find the quantum a given point x belongs to, we introduce the index function 9 );: P : 
<� 4 , which
returns the index of the quantum that contains the point, under the quantization scheme P :

9 x : P ��= x � ρ
D > � (3)

So we have 9 x : P � k ? x � dk. When no confusion is possible, the subscript P can be dropped.

Quantization of higher-dimensional spaces are based on the quantization of 
 . For instance, we need
2 one-dimensional quantizations Px and Py to construct a quantization P of the plane:

P ��� dkl � dk  dl �� dk � Px � dl � Py � �
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and we let 9.� x � y � : P �@��9 x : Px �A9 y : Py � . This results in a rectangular tessellation of the state space where
each quantum is a hyper-rectangle.

The algorithm described in section 6 uses a variable-size quantization. To obtain this we first introduce
a base quantization, defined by DB and ρB (the base quanta size and quanta phase). A scaling factor ω �CB 0
is then used to define the actual quanta size as

Dω � DB

2ω � (4)

and the constraint 0 # ρω 0 Dω is satisfied when we use

ρω � ρB � Dω = ρB

Dω > � (5)

A maximal scaling factor, ωmax, can also be defined. By only allowing quanta sizes to be halved, we
guarantee that QIs present in the base quantization are also present when ω / 0. In other words, halving
the quanta sizes only adds new QIs. This might be an essential property in some situations, for instance
when we want to associate a state event [10] with a given QI.

4 Non-Adaptive Quantization Algorithm

We introduce a non-adaptive algorithm based on quantization that can solve the simple first-order, au-
tonomous system �

ẋ � f � x �
x � 0 ��� x0 � (6)

The algorithm is based on the well-known Forward Euler approximation:

xi � 1 � xi � hi
) f � xi � � (7)

In the non-adaptive discretization approach, the timestep hi is constant, and the difference equation is
iteratively solved for xi � 1 to build the state trajectory X . In other words, we can view non-adaptive dis-
cretization as the answer to the question “in which state is the system going to be at a given future time?”.

The approach is reversed in quantization: knowing xi � 1, we solve for the timestep hi. This matches
more closely the discrete-event style of expressing dynamics. We define the next state value xi � 1 as the
QI closest to the current state xi in the direction specified by the slope f � xi � . In quantization, events
are associated with the state trajectory leaving a quantum. The next state value is computed with the
function σ, which is expressed in terms of the index function (3) as

σ � x � ẋ �D� EFFG FFH
D 1I9 x : � 1 2 � ρ if ẋ / 0,� D 1 9 � � x � 2ρ � : � 1 2 � ρ if ẋ 0 0,

x if ẋ � 0,

(8)

so that xi � 1 � σ � xi � ẋi � . The function returns the QI above or below xi, when the slope is positive or
negative, respectively. Using this in equation (7) we obtain

hi �@J σ � xi � f � xi ��� � xi
f � xi � if f � xi �LK� 0,

∞ if f � xi �M� 0.
(9)

4



We note that whenever f � xi �N� 0, we get hi � ∞: this is justified by the fact that in autonomous sys-
tems, a zero slope corresponds to a fixed point. Non-adaptive quantization answers the questions “when
will the state of the system reach a given value?”. This form of quantization has been called predictive
quantization [4].

We present below the complete definition of an atomic-DEVS that solves IVPs using the above for-
mulas. We note that in DEVS terminology, equation (8) solves for the internal transition of the model,
while equation (9) solves for its time-advance. The strategy can be generalized to higher order systems by
computing the timestep as

hi � min
j
� hi O j � � (10)

where hi O j is the time-advance associated with the jth component of the state vector x. The next state is
computed with

xi � 1 � xi � hi
) f � xi � � (11)

In the algorithm, all quanta sizes are assumed to be equal for every state x1 � x2 � ���P� xn, although this could
easily be generalized. We refer the reader to [2] for an extension where the atomic-DEVS may receive
inputs.

atomic-DEVS — nonadaptive quantization

Given an IVP of the form (1), a quanta size D and a quanta phase ρ, we define:Q Partial State
The partial state s of the atomic-DEVS is a tuple

s RTS x U h U t V
where

x is the next state of the ODE,

h is the time until the next event,

t is the global time at the next event (used in nonautonomous systems).Q Internal Transition Function s WXR δint S s V
1. Compute the current slope ẋi R f S s Y t U s Y x V ;
2. For every component xi Z j U j R 1 U 2 U[Y[Y[Y n of xi R s Y x, compute hi Z j according to equation (9);

3. Compute hi and xi \ 1 according to equations (10) and (11), respectively.

s W^] S xi \ 1 U hi U s Y t _ hi VQ Output Function y R λ S s V
y ] s Y xQ Time Advance Function h R ta S s V
h ] s Y h

Finally, the initial partial state is given by

s R`S x0 U 0 U tI V
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Figure 2 shows the result of an experiment with the circle test problem, defined as�
ẋ � y x � 0 �D� x0
ẏ � � x y � 0 �D� y0 �

and with the exact solution
x � t �a� x0

) cos � t � � y0
) sin � t �

y � t ��� � x0
) sin � t � � y0

) cos � t � �
The first quadrant of the solution is reproduced in Figure 3 with the quantization grid of size D � 0 � 1, to
emphasize that events correspond to QI crossings. As expected in a second-order problem, the values of
the approximate solution correspond to a QI of either partition of x or y.

It has been claimed [8, 14] that one of the main advantages of quantization is related to the reduction of
the computational cost in solving a continuous system. To verify this claim, we compare the performance
of our nonadaptive quantization algorithm to that of the well-known Euler discretization algorithm (refer
to Figure 4). We performed several simulations, with both algorithms, of the circle test problem. Every
simulation run covers the time interval  0 � 4π � , and uses the same initial conditions, x0 � 0 and y0 � 1. Only
the quanta size D and the timestep h are steadily varied, for quantization and discretization respectively,
in each experiment. For each simulation run the Number of Computation Steps (NCS) is reported on the
horizontal axis of the figure. On the vertical axis we show the error associated with an experiment, defined
as

Err � 1
n

n

∑
i � 0 b xi � x � ti � b �

where n is the NCS. The error thus corresponds to the average difference between the numerical and exact
solutions, over a given time interval.

Figure 4 suggests that for a same computational cost discretization will consistently yield a smaller
error than quantization. Conversely, for any given error, quantization is more computationally expensive.
Even though the difference between the two curves is qualitatively small, this result seems to indicate
an accuracy limit inherent to the quantization method introduced above. Furthermore, the difference
between the curves is exacerbated if we use the number of flops (taking into account the cost of individual
operations) instead of the NCS as a unit of computation cost.

The same experiment was repeated on a stiff system described by [7]

EG H
ẋ � y

L
x � 0 �D� x0

ẏ � U � x
C � R ) y

L
y � 0 �D� y0 �

with R � 100 � 01, L � 0 � 01, C � 0 � 01 and U � 100. Figure 5 shows a solution y � t � of the system. In
Figure 6, we compare the performance of quantization and discretization on this stiff system in the same
manner as we did before. Every simulation run covers the time interval  0 � 7 � , and initial conditions
are x0 � 0 and y0 � 0. The error can be evaluated using the exact solution

EFG FH
x � t �a� 1

9999
� e � 10000t � 10000e � t �

y � t �a� 100
9999

� e � t � e � 10000t � �
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The results are consistent with those obtained before: for a same computational cost discretization will
consistently yield a smaller error than quantization.

We end this section by presenting the results obtained with a simple first-order system. As opposed to
the previous systems, this one is non-autonomous. Consider

ẋ � αx � t � β � x � 0 �c� x0 �
with α � 0 � 2, β � 5. The exact solution is given by

x � t �c� x0
) e α t

2 d t � 2β e �
Figure 7 shows a sample simulation run obtained with quantization, where the numerical solution is com-
pletely wrong. This behaviour will be explained in the next section in terms of the Zero-slope problem ,
when we study consistency and convergence of quantization.

5 Numerical Analysis

In this section we present results related to the numerical properties of quantization. Our analysis of
consistency, convergence and stability is based on simple first-order, nonautonomous systems. The results
can however be generalized to higher-order systems. This analysis illustrates the Zero-slope problem [3]:
the fact that the quantized numerical solution cannot be trusted, generally, when the right-hand side of an
ODE (1) gets close to zero.

5.1 Consistency

The local truncation error τ is defined as

τi � 1 � �� x f i g � ti � 1 � � xi � 1 ��� h2
i

2
�� ḟ � x � ξ ���h�� � ti # ξ # ti � 1 � (12)

based on a Taylor expansion with remainder. Here, x f i g � t � is the exact solution to the original ODE, but
with initial condition x � ti �D� xi.

A numerical approximation scheme is said to be consistent if the local truncation error goes to zero as
the timestep h goes to zero. It is thus clear from equation (12) that Euler is consistent in the discretization
case. In quantization, we derive from equation (7) the following inequality:

hi � xi � 1 � xi

f � xi �# D ) sign � f � xi ���
f � xi � � (13)

Hence the timestep is undefined when the slope is zero. To be consistent with equation (9) we use

hi # D! f � xi �i! � (14)
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We now show that our strategy is consistent when applied to a first-order, autonomous system, i.e., τ � 0
as D � 0.

First, observe that the existence and uniqueness of a solution to the problem (6) is guaranteed if f and
fx are continuous and bounded over the infinite stripj � � � t � x � �� tI # t # tF �"! x !X# ∞ � �
From this it follows that there exist positive constants C and L such that k x, ! f � x �i!+# C and ! fx � x �i!+# L (the
Lipschitz constant).

Let us assume that there exists a constant ε such that for all x �l! f � x �i!,m ε / 0. Using equation (14)
in (12) we get (for ti # ξ # ti � 1)

τi � 1 # D2

2 ) ! f � xi �i! 2 ) �� ḟ � x � ξ ���h��� D2

2 ) ! f � xi �i! 2 ) ! f � x � ξ ��� ) fx � x � ξ �P�i!
# D2

2 ) ε2
) CL �

in which case τ � O � D2 � .
Let us now remove the assumption: if f � x �n� 0, then τ cannot be bounded from above. However we

observe that in an autonomous system,

f � x � t1 �P�M� 0 o f � x � t2 ���D� 0 � k t2 m t1 �
This corresponds to a fixed point. It follows that even “after” an infinite time step, we have τ � 0, which
is in O � D2 � .

The proof can be generalized to higher-order systems. In the case of nonautonomous systems however,

f � t1 � x � t1 �P�M� 0 Ko f � t2 � x � t2 �P�c� 0 � k t2 m t1 �
So unless we can assume, as before, a lower bound ε on the slope, we cannot guarantee consistency as an
infinite timestep will result in an infinite τ.

5.2 Convergence

Connecting the points x0, x1, x2. . . etc. by straight lines we obtain the Euler polygon x̃ � t � , a continuous
piecewise linear function that approximates x � t � over � . Kofman and Junco [7] recently proved an upper
bound on the global error E � t � :

E � t �c�p! x � t � � x̃ � t �i!�# D � eLt � 1 � (15)� O � D � �
8



This suggests linear convergence of the numerical solution towards the exact solution as D decreases. The
same proof can be used with our quantization strategy, and we obtain the same error bound for autonomous
systems. We will show however that, under our strategy, nonautonomous systems are problematic.

We observe that the slope of x̃ � t � is piecewise constant: for any t, the slope ˙̃x � t � is the function f
evaluated at the last QI crossed by the Euler polygon. In the case of a nonautonomous system, we have

˙̃x � t �c� f � t � µ � t �q� x̃ � t � � δ � t � � �
where δ � t � is the distance between x̃ � t � and the last QI crossed, while µ � t � is the time elapsed since that
last QI crossing. The global error is then evaluated as

E � t ��� ����sr t

tI
� ẋ � s � � ˙̃x � s � � ds ����# r t

tI

��� f � s � x � s � �t� f � s � µ � s �q� x̃ � s � � δ � s � � ��� ds �
Using a Taylor expansion of the second term in the integrand around f � s � x̃ � s � � and using the fact that f
is Lipschitz continuous in x, we have

E � t �u# L r t

tI

��� x � s � � x̃ � s � ��� ds � L r t

tI

��� δ � s � ��� ds �
� CL r t

tI

��� µ � s � ��� ds �
In the case of autonomous systems, the last term is absent. Observing that ! δ � t �i!X0 D, one can prove the
bound (15) using the Gronwall-Bellman inequality [6], which states that

f � t �u# α � t � � r t

0
β � s � f � s � ds

o f � t �u# α � t � � r t

0
α � s � β � s � e v t

s β d τ e dτ ds � (16)

For a nonautonomous system however, we have

! µ � t �i!q� ���� δ � t �˙̃x � t � ���� �
which is undefined whenever ˙̃x � t �c� 0. Thus we cannot prove convergence in that case.

5.3 Stability

We will look here at absolute-stability. For this we use the test equation

ẋ � λx �
x � 0 �w� x0

9



whose exact solution is x � t �c� x0eλt . We are interested in the case where λ 0 0, which yields a necessary
requirement for absolute stability [1], ! xi !X#x! xi � 1 ! � (17)

We start our analysis by rewriting equation (13) as

hi � D ) sign � f � xi ���
f � xi � �

where we have equality if we assume without loss of generality that x0 corresponds to a QI. Substituting
into equation (7), we get

xi � 1 � xi � D ) sign � f � xi �P� �
Instead of examining the characteristic equation of this when applied to the test problem, we will study
stability by drawing the iterative map (see Figure 8).

It is clear that since all xi fall on a QI, our numerical solution will reach the fixed point of the map only
if that point falls on a QI. Otherwise, the solution will oscillate between two values xa / 0 and xb 0 0,
xa � xb � D as shown in Figure 8.

We can say that in general the absolute stability requirement (17) is not met. However, the numerical
solution will never diverge, and the oscillations are usually small since the quanta size D is typically small.

5.4 Discussion

Through our analysis, we showed that the presence of zero slopes is problematic: in the case of au-
tonomous systems, it might result in a timestep that is infinite. In the case of nonautonomous systems, we
cannot generally show consistency nor convergence. We observe that the dual problem in discretization—
infinite slope—is ruled out by the existence and uniqueness conditions imposed by Lipschitz continuity in
the dependent variables.

One obvious possibility around that problem would be to transform nonautonomous systems into au-
tonomous ones, by introducing a new dependent variable z � t such that ż � 1. This strategy results in
the time axis being quantized—or partitionned—just as in discretization. So we end up with an hybrid
approach that combines both quantization and discretization, with no immediate benefits.

Another possibility around the Zero-slope problem would be to saturate the timestep when the slope
is “small”. Observe that saturating h with some constant c would not work, since then we still obtain
τ � O � 1 �ty O � D2 � . A better approach would be to impose h # D. However, this strategy is very close to
the first one, resulting once again in an hybrid approach.

6 Adaptive Quantization

In this section we present a first attempt at an adaptive quantized approach based on the non-adaptive
algorithm presented in section 4. Earlier references to “dynamic quantization” can be found in [13, 11].
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Adaptation is used in discretization to reduce, on the average, the number of approximations xi, while
stillguaranteeing a certain accuracy in terms of the local truncation error. The simple idea is to use at each
step the largest timestep hi that will keep the local truncation error τi � 1 below a predefind tolerance TOL.

The same rationale motivates the use of adaptation in quantized algorithms. Another important reason
for adaptation in quantized algorithms is illustrated by our results on stability: an adaptive algorithm will
guarantee that the oscillations encountered while studying absolute-stability are limited by the tolerance
TOL.

We will once again consider first-order, autonomous systems of the form (6).

Adaptive strategies are based on an approximation ∆i of the local truncation error τi. At each step the
quanta size Di are recursively halved until we respect the condition

∆i # TOL � (18)

To allow for the quanta size to grow, the initial guess for Di � 1 is tentatively set to 2Di. Using this approach,
Di # Dopt

i , where Dopt
i is the largest quanta size such that ∆i � TOL. Note that doubling the quanta size is

not recursive: it follows that over a simulation, the scaling factor ω can jump from a low to a high value,
but it can only increase smoothly.

The exact local truncation error τi is defined in equation (12). Based on the Richardson extrapola-
tion [5], the approximate local trunctation error ∆i is evaluated as

∆i � 1 ��! x̂i � 1 � xi � 1 ![�
where x̂k is a higher-order numerical approximation, obtained by taking 2 half-steps (see Figure 9):

x̂i � 1
2
� xi � hi

2
f � xi �

x̂i � 1 � x̂i � 1
2
� hi

2
f � x̂i � 1

2
� �

So we obtain
∆i � 1 � hi

2
��� f � x̂i � 1

2
� � f � xi � ��� � (19)

The timestep hi is determined by the quanta size Di through equation (9). Whereas in adaptive dis-
cretization we normally choose the highest-order approximation x̂i � 1 for the next step, we use the lowest-
order approximation xi � 1 in adaptive quantization. Choosing otherwise would not guarantee that the next
approximation corresponds to a QI, as illustrated in Figure 9.

This strategy does not generalize well to higher-order systems, where it might only be necessary to
halve one of the n quanta sizes to respect the tolerance. Nevertheless, the atomic-DEVS we describe in
the algorithm below extends the idea by imposing the conservative constraint that all quanta sizes (and
phases) be identical at each time, resulting in a homogeneous quantization.

The 3-state FSA shown in Figure 10 controls the dynamics of the atomic-DEVS. Each state in the
figure corresponds to the possible values for the partial state element s � α. Arrows represent internal transi-
tions, and are labelled with the previous values returned by the time advance and output functions. When
more than one transition leaves a FSA state, the precondition is specified within brackets.
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atomic-DEVS — adaptive quantization

Given an IVP of the form (1), a base quanta size DB and a base quanta phase ρB, we define:Q Partial State
The partial state s of the atomic-DEVS is a tuple

s R`S α U xi U ẋi U ti U xi \ 1 U ωi U Di U ρi U ωi \ 1 U hi U ∆i \ 1 U ∆i V
where

α zC{ 0 U 1 U 2 | is the FSA state,

xi is the current state of the ODE,

ẋi is the current derivative (stored for efficiency),

ti is the current global time (used in nonautonomous systems),

xi \ 1 is the current guess of the next state of the ODE (stored for efficiency),

ωi is the current scaling factor,

Di is the current quanta size (stored for efficiency),

ρi is the current quanta phase (stored for efficiency),

ωi \ 1 is the initial guess of the scaling factor for the next step,

hi is the timestep to get to the next event,

∆i \ 1 is the approximation of the local trunctation error while going to the next step,

∆i is the approximation of the local trunctation error while going from the previous to the current
step (remembered for output).Q Internal Transition Function s WXR δint S s VQ If s Y α R 0

1. For every component xi Z j U j R 1 U 2 U[Y[Y[Y n of s Y xi, compute hi Z j according to equation (9);
2. Compute hi, xi \ 1 and ∆i \ 1 according respectively to equations (10), (11) and (19).

s Wh] }~~� ~~�
S 1 U s Y xi U s Y ẋi U s Y ti U xi \ 1 U s Yωi U[Y[Y[Y

s YDi U s Y ρi U max { s Y ωi � 1 U 0 |�U hi U ∆i \ 1 U s Y ∆i V if ∆i \ 1 � TOLS s Y α U s Y xi U s Y ẋi U s Y ti U s Y xi \ 1 U min { s Yωi _ 1 U ωmax |�U[Y[Y[Y
Ds � � ωi U ρs � �ωi U ωi \ 1 U hi U ∆i \ 1 U ∆i V if ∆i \ 1 � TOLQ If s Y α R 1
s RTS 2 U xi U ẋi U ti U xi \ 1 U ωi U Di U ρi U ωi \ 1 U hi U ∆i \ 1 U ∆i VQ If s Y α R 2

Compute ẋi \ 1 R f S ti \ 1 U s Y xi \ 1 V .
s R`S 0 U s Y xi \ 1 U ẋi \ 1 U s Y ti _ s Y hi U��lU s Yωi \ 1 U Ds � � ωi U ρs � � ωi U��lU���U+�lU ∆i \ 1 VQ Output Function y R λ S s VQ If s Y α z�{ 0 U 2 | — mute states

y ] �Q If s Y α R 1
y ] { s Y xi U s YDi U s Y hi U s Y ∆i |
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The fields s YDi and s Y ∆i are included in the output for our analysis only.Q Time Advance Function h R ta S s VQ If s Y α z�{ 0 U 1 | — transitory states
h ] 0Q If s Y α R 2

h ] s Y hi

Finally, the initial state is given by

s0 RTS 0 U x0 U ẋ0 U tI U+�lU ω0 U D0 U ρ0 U��lU��lU��lU 0 V,U
where ω0 � 0 is the initial scaling factor.

Results on the circle test problem are show in Figure 11, which demonstrates the effect of TOL on the
solution. Figure 12 is shows the evolution of the approximate local truncation error ∆i, and how the quanta
size Di varies accordingly.

Conclusion

We presented a simple non-adaptive quantization algorithm in section 4. Through our analysis, we showed
that the presence of zero slopes is problematic: in the case of autonomous systems, it might result in a
timestep that is infinite. In the case of nonautonomous systems, consistency and convergence cannot be
guaranteed.

In section 6 we presented an adaptive quantized algorithm. Although very simple, we see an improve-
ment in the performance of the new algorithm with respect to the non-adaptive version. However, adaptive
quantization suffers from the same problems as the non-adaptive version.
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[3] Jean-Sébastien Bolduc and Hans Vangheluwe. Mapping ODEs to DEVS: Adaptive quantization. In
Proceedings of the 2003 Summer Simulation MultiConference (SCSC’03), pages 401–407, Montréal,
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Figure 3: First quadrant of Figure 2, with quantization grid.
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Figure 7: Nonautonomous problem: x0 � 1; D � 2 � 5e � 2, ρ � 0.
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