
DSheet: The Designed Spreadsheet

Marc Provost
McGill University

marc.provost@mail.mcgill.ca

26th August 2004

Abstract

The DSheet project aims at teaching to undergraduate students how to design a relatively complex application. Most software
design examples shown to students come from a wide range of domains and cover only specific problems. The students are never
in contact with the design and the construction of a complete application before building it themselves. The main challenge of this
project was to find an application that is complex enough to demonstrate software design, while being simple enough to be understood
by students without much prior knowledge about design. We think that spreadsheets, which are used by most science students, fulfill
this objective. We will show that a spreadsheet can nicely be divided into several small components. Each component can then be
designed independently, leading to the iterative implementation of prototypes. It is possible to demonstrate the use of design patterns
in the prototypes and the iteration allows the application of regressive testing. This document, which contains the complete design,
expressed in UML Class Diagrams, object interaction diagrams and DCharts, was written as a teaching tool for the students. A fully
tested, complete and documented implementation of the presented design is also freely available. We think that with DSheet, the
students will be able to understand more clearly the links between the various constructs used while designing a complex application.

Acknowledgements

I would like to thank Professor Hans Vangheluwe for his very useful help throughout the project. DSheet would not be as complete
without his help.

TODO list

This document contains a lot of information, but is still under construction. If you find that anything is missing or is unclear, let me
know and I will add it to the TODO list!

• Prototype 3:

• Add more information/diagrams about the observer pattern.
• Discuss the role of the SubjectManager
• Discuss the implementation in more details.

• Prototype 4:

• Find a clean approach to automatically test the GUI
• Describe constraints/actions for all transitions in the statecharts
• Some design elements are missing, some methods are not described.
• The final statechart, which handles the timer is not digitalized yet.
• Add more information about the implementation

• Add used references (Design books, architecture books, etc)
• Improve Conclusion

Contents

1 Introduction 1

2 Software Process 1

3 Problem Definition 2

4 Requirements specification 2

4.1 DSheet Use-Cases: Determining the requirements (High Level) . 2

4.2 Use-Case 1: Viewing a spreadsheet . 3

4.3 Use-Case 2: Entering data / formula . 3

4.3.1 What are formulas? . 3

5 Architecture 3

6 Detailed Design 3

6.1 Prototype 0: Utility module . 4

6.1.1 Problem Definition . 4

6.1.2 Requirements . 5

6.1.3 Testing Strategy . 5

6.1.4 Design . 5

6.1.5 Testing and implementation . 5

6.2 Prototype 1: Abstract syntax tree . 6

6.2.1 Requirements . 6

6.2.2 Testing Strategy . 6

6.2.3 Design . 6

6.2.4 Testing & Implementation . 9

6.3 Prototype 2: Formula Parser . 11

6.3.1 Problem Definition . 11

6.3.2 Detailed Requirements . 11

6.3.3 Testing Strategy . 13

6.3.4 Design . 13

6.3.5 Testing & Implementation . 13

6.4 Prototype 3: DataSubject . 15

6.4.1 Problem Definition . 15

6.4.2 Detailed Requirements . 16

6.4.3 Testing Strategy . 16

6.4.4 Design . 16

6.4.5 Testing & Implementation . 21

6.5 Prototype 4: Graphical User Interface (GUI) . 22

6.5.1 Problem Definition . 22

6.5.2 Detailed Requirements . 22

6.5.3 Testing Strategy . 24

6.5.4 Design . 24

6.5.5 Implementation & Testing . 28

7 Conclusion & Future extensions 29

i

List of Figures

1 DSheet Architecture, V0.6 . 4

2 Singleton pattern . 6

3 Composite Pattern . 7

4 AST Design, first draft . 7

5 Re-factorized AST Design . 7

6 AST Design with Preliminary Interface . 8

7 Visitor for the AST . 9

8 AST with updated interface to support the visitor pattern . 10

9 Collaboration Diagram showing the execution order of the toString operation on the formula sum(5,mul(A1,10)) 11

10 UML Class diagram for the formula parser . 14

11 A sample parse tree and its reduced AST form for the formula 5+4 . 15

12 Preliminary interface of the DataSubject . 18

13 DataSubject with evaluate . 19

14 SSheetData with Command design pattern . 20

15 SSheetData with refactored Command pattern . 21

16 SSheetData with observer pattern . 22

17 Gnumeric GUI . 23

18 Class Diagram including the methods used while viewing the spreadsheet . 25

19 Class Diagram including the methods used while editing the spreadsheet . 26

20 Statechart modelling the behavior of a user viewing the spreadsheet . 27

21 Statechart modelling the behavior of a user editing the spreadsheet . 29

List of Algorithms
1 topoSort . 31
2 dfsSort(cell, cellsLabelling, sortedList) . 31
3 strongComponents . 31
4 dfsCollect(cell, cellsLabelling, component) . 32
5 EvalVisitor . 32
6 Evaluate . 33

ii

1

1 Introduction

This document specifies in detail the requirements, the design and the implementation of DSheet, a relatively complex spreadsheet
application. DSheet was created to demonstrate the software design techniques discussed in COMP304 ”OO Software Design”. Most
of the software design examples that the students encounter during their undergraduate studies are usually simple if not trivial.
In contrast, DSheet supports the main features of popular open source (e.g., gnumeric) and commercial (e.g., excel) spreadsheets.
A complete design of DSheet, starting from the top-level architecture down to the code itself, is described in this document and
is freely available to the students as a learning tool. DSheet is complex enough to demonstrate each step of the software process
while being simple enough to be understood by undergraduate students without much prior knowledge about design. The project
requirements are specified such that they fulfill this general goal. In practice, complex software contains many components, and this
project gives an idea of how to build such programs. Components simplify the implementation by dividing the problem into smaller
parts. They help the programmers to communicate ideas of a high level of abstraction. They are good for reuse because each of them
provides a particular functionality via its interface. DSheet is complex enough to be described by several components. The project
also demonstrates how high level design of components is important for reuse, understandability, maintenance, and for shortening the
development time. Several design patterns are used and adapted to the components, showing how previous experience accumulated
by experts is very useful in new projects. Also, automatic regressive tests are applied when new prototypes are merged with previous
ones. Every design decision is thoroughly justified: a comparison of alternatives is documented, since it is important to know why a
certain approach was implemented. In the following sections, we will describe the software process that will be followed to design
and implement DSheet. The remaining sections will present the development of DSheet in the context of this software process.

2 Software Process

As software projects become more and more complex, the importance of building them in a structured manner increases to maintain
quality. One can easily get confused when dealing with complex problems, which increases the probability of errors. Even if there
are no errors in an implementation of a complex problem, the resulting solution could be very inelegant. This leads to software which
is long to develop, very hard to understand and, consequently, to maintain and reuse. To reduce development and maintenance costs,
developers model how to create a program, from the requirements specification to the implemented solution. This is generally known
as the Software Process. Several processes were developped and aim to accurately model software creation. In general, developers
go through the following steps to create an application:

• Pre-Implementation

• Problem definition
• Requirements specification
• Architecture (package-based)
• Detailed Requirements
• High-level design (class-based)

• Implementation

• Low-level design (routine-based)
• Coding

• Testing
• Deployment, Maintenance

Each flavor of the Software Process spend more or less time on each step. The approach to be used to develop DSheet must have
emphasis on design and testing. A prototype based software process allows regressive testing and solidify the design. Each prototype
solves a particular sub-problem of the application and is implemented and tested independently. More complex prototypes are built
using previous prototypes. Since each prototype has its own testing suite, all the tests can be applied each time a new prototype is
merged with the current application. Such an approach ensures that the design for each component is working since it is implemented
independently. Also, prototypes are easier to design since they implement smaller problems that are easier to understand. These steps
are followed in the prototype-based approach:

• Pre-Implementation

• Problem Definition
• High level requirements
• Architecture (prototype-based)

• Prototype iteration:

2

• Subproblem definition
• Detailed requirements
• High level Design
• Coding & Merging
• Regressive Testing

• Deployment, Maintenance

3 Problem Definition

The intention is to build a spreadsheet application that can be used for simple management needs. The hidden objective behind this
application is to demonstrate the software process with a focus on design. In the spreadsheet, the user will interact with a grid of cells
where data can be inserted. Relatively complex formulas, which can contain references to other cells and functions, will be supported.
Undo, redo, copy and paste should be supported in order to show how to design such features. The possibility to have multiple views,
potentially on multiple machines, of the same data must be supported. A complete while simple graphical user interface (GUI) must
be supported as well as a purely textual interface. The latter will enforce modularity.

4 Requirements specification

The next step in a programming project is to determine what results are expected at the end of the development process. There is
often, in practice, a mismatch between the requirements that are established and the features that an application should have in the
future. The apparition of such unexpected features during the development process must be prevented as much as possible because it
causes an enormous waste of time and effort. Indeed, such surprises will normally be hard to incorporate in the application since the
design was not conceived to handle them. Due to time constraints, one may need to “hack” the feature in the project and doing this
will eventually damage the design. This may lead to an application that is no longer modularized, reusable and easy to understand.
In the worst case, it could be impossible to implement the feature in the application without rebuilding it from scratch. To avoid the
above problems, a fair amount of time will be spent to determine the requirements of DSheet. As one might have expected there is
no formal approach to determine the requirements of a project. When humans have no formal science to explain phenomena, they
gain understanding by experimentation. But how can one possibly experiment with something that does not exist (yet)? This is a
fundamental philosophical question, but note the “yet” in parenthesis. Since one knows that this project will have to exist in the
future, one may try to imagine it. A potential approach to generate experience, in a software design context, is to imagine many
use-cases that the application should support. For each actor interacting with the system (e.g.,, a client, an employee, a printer, a
camera) , describe how it interacts via use-cases. Then, from those use-cases, deduce the underlying requirements. This approach
is better than simply listing the requirements that one can think of, since it directly brings the context in which the application will
be used. Consider the following real experience where that approach was not followed, leading to unpleasant consequences. One of
the project requirements was do provide database entries containing information about consumers’ habit. Since it was a very large
database, the programmer reduced the precision of floating point numbers to economize memory. However, the information was to
be used in very complex statistical tests that required very high precision. One can easily imagine the consequences: wrong statistical
tests were used for marketing purposes for several months before the error was discovered. And since the error was at a very low
level, the whole project had to be reconstructed from scratch (with cost in the millions, due to the incredible amount of information
to deal with). If the client had discussed potential use-cases with the developers, the need for floating-point precision would have
arisen very quickly. To avoid such problems in DSheet, the use-cases approach will be followed to help determine the requirements,
in combination with traditional requirement listing. We combine both approaches because use-cases do not capture everything. There
are two kinds of requirements that need to be determined, functional and non-functional. A functional requirement can be determined
by a use-case, because it is a equivalent to a feature of the software. For example, the fact that a cell of the spreadsheet must contain
either a formula or a string will easily be captured by a use-case. However, a given use-case will hardly capture non-functional
requirements, such as performance or the budget of the project. Those need to be thought of with the client and transformed into a
list of requirements. Also, some part of the project, such as the GUI are very hard to describe with use-cases, because they contains
a lot of implicit requirements and a given use-case will only capture a small amount of them. They will have to be dealt separately.
In the following section, use-cases for DSheet are described and determine its requirements.

4.1 DSheet Use-Cases: Determining the requirements (High Level)

In this section several use-cases that will help determine the requirements for DSheet are presented. The first question that need to be
answered is: how many actors are interacting with DSheet? One could say that there is only one actor interacting with DSheet, the
user. However, different people use a spreadsheet: scientists, students, professors, managers, etc. What kind of users should DSheet
support? DSheet will support data/formula oriented users: it will not have a plotter, solvers or other scientific tools. The use-cases
will describe how a data/formula oriented user interacts with the system. There are two modes of interaction with DSheet:

• the user is viewing the spreadsheet;

4.2 Use-Case 1: Viewing a spreadsheet 3

• the user is entering text in a cell (formula or constant data).

There will be one use case for each mode. Each use-case is described by a flow of events.

4.2 Use-Case 1: Viewing a spreadsheet

• Precondition: The user starts DSheet or ends cell editing.
• When the user starts DSheet, an empty spreadsheet of size 2000 by 2000 is created by default. This size can be modified by

the user.
• The user can select cells with the mouse or the keyboard.
• Commands can be applied on selected cells: clear, cut, copy, paste.
• Commands can be undone or redone.
• Commands are can be trigerred with the top menu, the keyboard or the mouse.
• The document can be saved, another document can be loaded.
• Multiple views of the same data can be instantiated.
• New independent views can also be created.
• Postcondition: The user trigger cell editing with the mouse or the keyboard

4.3 Use-Case 2: Entering data / formula

• Precondition: The user triggers cell editing in the currently selected cell with the mouse or the keyboard.
• If the first character of a cell is “=”, the data is considered to be a formula. Otherwise its constant data.
• Data can be inserted with the keyboard.
• Postcondition: Cell editing is ended and the data parsed correctly

4.3.1 What are formulas?

• A formula is an expression consisting of operators and operands that evaluates to a float
• All basic mathematical binary operators are supported: ˆ,+,-,*,/
• Other cells can be operands via cell references. Column are referred as letters, row as numbers.
• It is possible to refer to other cell relatively or absolutely. The “$” character before a row or a column is used to denote

absoluteness. When a formula is moved from cell (x,y) to cell (x + ∆x,y + ∆y), the relative rows and columns references are
updated respectively by ∆x and ∆y to reflect the new context.

• Function can also be operands. Functions take an undetermined number of formula arguments.
• The “:” character specify a range of references. Two references, one to the left, the other to the right of “:” denotes the two

corners specifying the range.

5 Architecture

This phase of the software process describes, at a very high level, the structure of DSheet. It is particularly important in this stage to
work defensively: a mistake in the architecture will affect the detailed design and the actual construction. The more time is invested
in this step, the easier will be the implementation. Experimental data shows that a change in the coding requires less time, on average,
that a change in the architecture (requirements are even worse, Basili and Perricone 1984). Thus, architecture changes have to be
made early to avoid time wastage. Having a well-documented architecture is also desirable because it acts as an abstraction that helps
manage complexity: most of the details are handled in the detailed design phase. It can then be used as a means of communication
between different agents developing the project: architects, designers, programmers, managers, etc. In fact, each person of the project
will refer to it. For instance, the manager will plan his resources by analyzing the architecture, a designer needs to understand the
interaction between the component he is trying to design and other components, etc. The architecture should describe in detail
what functionality each component provides. Each component can be seen as a collection of classes fulfilling the same high-level
objective. For instance, a high-level objective could be too manage data, parse input or provide a graphical user interface to the user.

6 Detailed Design

An incremental approach is followed to implement DSheet. First, the component having minimal dependencies on other components
is designed, tested and implemented. Then, DSheet is incrementally built upon it. In other words, components are topologically
sorted by dependencies and they are developed in that order (see Figure 1). Components with a larger set of dependencies reuse
the previous prototypes in their testing and implementation phase. This approach allows regression testing and solidify the previous
developed components. The application grows in complexity as prototypes are extended with more components, ultimately yielding
the full DSheet application. In the following sections, this process is explained in detail for each component.

6.1 Prototype 0: Utility module 4

Figure 1: DSheet Architecture, V0.6

Each section is organized as follows:

1. Detailed Requirements Specification (from use-cases)

2. Testing Strategy

3. Design

4. Testing and implementation

For each component, the first step is to determine the requirements. This is achieved by analysing the use-cases presented in section
4.1 on page 2. A priority scheme will be used for the features that are not implied by a use-case directly. They will be named must-
have, good, or optional. They will be considered in the design phase, and their implementation difficulty should be weighed against
their priority. Once the requirements are specified, the testing strategy is established for each requirement and for the component as
a whole. Then, the component is designed in detail: the decisions are justified carefully, several versions of the design are shown
and UML diagrams are provided for each of them. In short, we go through the thinking process that was taken to achieve the final
design of each component rather than to provide the final result of that process. Also, design patterns are used wherever they fit
a problem. Finally, when the design is finished, the testing suite and the component are implemented. Python was chosen as the
implementation language for the first version of DSheet. The scripting language Python has several advantages: quick development,
extensive libraries (lists, dictionaries, etc), memory management and object orientation. Furthermore, Python’s system is intuitive
and results like pseudo-code. This is perfect for a first draft of DSheet. Dynamic typechecking will be manually enforced since
Python does not support it. Each time a function is called, its arguments’s types will be verified against the expected types. The
design presented in this document could be realized in a statically typed and compiled language for efficiency later. The file structure
of the implementation of each prototype is organized as follows:

• One directory for each component.
• One file for each class of the design
• Within each component, a subdirectory containing the testing suite.

A shell script must be provided to automatically execute the tests. The tests will be implemented using pyUnit, python’s unit testing
framework.

6.1 Prototype 0: Utility module

6.1.1 Problem Definition

The utility module will provide global methods and constant values needed by several modules. (e.g., error handling, math functions,
conversion functions, etc).

6.1 Prototype 0: Utility module 5

6.1.2 Requirements

This module must support a mechanism for adding features that are needed by several modules. It should be possible to easily add
such features in future prototypes. Two features are known to be needed by all the modules: error handling and type checking.

• Error Handler:

• A mechanism for handling errors should be supported to prevent data loss after an error (must-have)
• A mechanism for adding features needed by several modules (such as error handling) must be developed.

• Type Checker:

• The arguments’s types of every method must be compared against the expected types. (if not native in the language)

The error handler should handle three level of severity:

• LOG : Display an error msg to stderr (will be used for debugging).
• WARNING : Display an error msg to stderr, but continue execution (e.g., File not found).
• FATAL : Display an error msg to stderr, exit the application cleanly.

Error messages must contain at least the following information:

• Time stamp
• Module name, file name, method name, line number
• Severity level
• Description of the error

6.1.3 Testing Strategy

Test methods for success, failure and sanity. Ensure that the errors behave as expected.

6.1.4 Design

The design is based on the singleton pattern (see the Class Diagram on Figure 2). There will only be one instance of each Utility
class at any point in time during execution. As they are needed by future prototypes, global features will be implemented as utilities.
In this prototype, two global utilities must be implemented: ErrorUtility and TypeCheckUtility.

The ErrorUtility will be used throughout the application each time the pre-conditions of a method call are not respected. In
particular when the types of the arguments are incorrect or when the values of the arguments are not in the expected ranges. Also,
the value returned by functions must be verified for correctness when possible. For instance, in the c programming language, one
should verify that fopen does not return null. In general, ErrorUtility will be used as much as possible to detect errors in
the application before they cause bugs that are difficult to detect. A class that needs to handle errors will provide three methods:
handleLOG, handleWARNING and handleFATAL. At runtime, its instances will register themselves to the ErrorUtility singleton,
which will notify each registered object every time an error occurs. Registered objects can then react appropriately depending on the
level of the error (i.e., save state, display message, etc). ErrorUtility also logs every error message to a stream (stderr, log.txt, etc)
specified at instantiation time. Note that a future sophistication of this design might use a hierarchy of error handlers.

Another utility is used to provide type checking if it is not supported natively by the implementation language. Type checking of
arguments is very useful for debugging because it automatically detects trivial misuses of interfaces. The class TypeCheckUtility
simply verifies that the arguments of a method correspond to their expected types. If it is not the case, it sends a FATAL error message
to ErrorUtility. A boolean flag debug, initially set to true, enables or disables type checking, which could be disabled for the
final release if it causes too much overhead.

It is possible that unforeseen features will need to be globally accessible in the next prototypes. Such features will be implemented
in utilities.

6.1.5 Testing and implementation

Since the implementation language does not support type checking, TypeCheckUtility must be implemented. Also, ErrorUtility
must be slightly modified to allow testing for failure. PyUnit support a mechanism for ensuring that a particular exception has been
raised on particular input. This can be used to verify that a feature fails correctly with unexpected input. Since ErrorUtility does
not explicitly raise exception instances, it is not possible to use PyUnit ability to detect errors on invalid input. This can easily be
corrected by directly raising the exceptions instead of sending error messages to the registered objects. A boolean flag isTesting
is setted to true when the tests are applied. It would have been possible build our own mechanism for detecting errors by analysing
the output stream of ErrorUtility, but it is simpler and faster to reuse the existing PyUnit approach.

6.2 Prototype 1: Abstract syntax tree 6

Figure 2: Singleton pattern

The tests were implemented in utility/test/. They simply verify that TypeCheckUtility send a message to ErrorUtility
when there is a type error, otherwise it should return true. ErrorUtility is tested by verifying that the correct message is sent
when an error occurs. Since this module is very simple, its testing suite is also simple. The testing strategy for more complex tests is
explained in the next prototype.

6.2 Prototype 1: Abstract syntax tree

6.2.1 Requirements

The abstract syntax tree (AST) will be the structure representing a formula in memory. It must represent expressions consisting of:

• Operators: +,-,/,*,ˆ
• Operands: References, float numbers, functions, range references
• An example: (3+4.4)*3-MIN(A1:A3,3.4,B5)*C8

6.2.2 Testing Strategy

Ensure that, once created, an AST can be traversed properly and that its interface behaves correctly. Again, test its interface for
success, failure and sanity.

6.2.3 Design

The design is based on the composite pattern. A tree is composed of any number of nodes. Each node can either be terminal or
non-terminal. A terminal node possesses no children whereas a non-terminal node is an aggregation of any number of other nodes
(either terminal or non-terminal). The general structure of an AST is best described in a Class Diagram, as seen in Figure3.

In order to represent formulae in an AST, several nodes are needed. They can be deduced from the requirements. The terminal nodes
can be determined directly from the requirements: numbers, cell references and range references. It is important to understand that
cell references nodes, even if they implicitly refer to another cell, are not composite nodes. They will simply hold the column and row
value of the reference. This approach is followed because there is no way to resolve a reference when the AST is created: it is not the
responsibility of the AST to know how to perform this task. Another component of the design will handle the dependencies between
the cells and evaluate them. Also, even though range references (e.g., A1:A7) contain two cell references, they are still not composite
nodes, since they hold, in place, a fixed number of specific nodes. From the requirements, it is clear that arithmetic expressions

6.2 Prototype 1: Abstract syntax tree 7

Figure 3: Composite Pattern

such as 4+A1-(3ˆ2+4)+MIN(A1:A7) and functions such as MAX(3+3,A1,B1:B6) are non-terminals. Arithmetic expressions can be
subdivided into several composite nodes: a node for sum expressions such as 4+5+A1, multiply expressions such as 4*3, inverse sum
(or minus) expressions such as 3-4, unary minus expressions such as-4, inverse multiply (or division) expressions such as 4/5 and
exponentiation expressions such as 4ˆ5ˆ3. A first template of the AST design can be seen in the Class Diagram of Figure 4.

Figure 4: AST Design, first draft

This first draft of the design has some problems. First of all, usually there is only one composite node in the composite pattern. In
this case, five nodes are needed and the difference between them is minimal. They all represent the same kind of information and
will provide a very similar interface. They will be evaluated using the same algorithm and only the operator will change during
the evaluation. There is a very elegant solution to this problem: notice that every composite node can be reduced to a generic
Function node. For instance, the SumExpr node really represents a function called “sum”, the invSumExpr node can be replaced by
an “invSum” function, etc. This approach has several advantages, the most evident is the simplification of the design, which improves
the understandability of this component. The fact that built-in functions (sum, invSum, mul, etc) and optional functions (complex
statistical functions, etc) are treated in exactly the same way is a bonus. All the functions will be located in one module and will
be easy to test, maintain and modify. Also, reducing the number of nodes will simplify the evaluation process: instead of having
to “understand” the SumExpr node and evaluate it properly, the evaluator will simply call the function “sum”. The re-factored AST
design is shown in the Class Diagram in Figure 5.

Figure 5: Re-factorized AST Design

The next step is to determine the interface of each AST node. Each node must possess accessors, the question is, should the nodes be
mutable or not? More clearly, once the formula is parsed and the tree is constructed, is it useful for an operation to change the value

6.2 Prototype 1: Abstract syntax tree 8

of a given node? For instance, “4+5” is represented by sum(number(4.0), number(5.0)). Is it useful to transform the AST to
sum(number(4.0), number(7.0)) in place? We note that, usually, when a formula is modified by the user, it will also be re-parsed
because it is impossible to know in advance how much the formula was modified. It could have changed completely. Also, the AST
is not modified when it is evaluated (it is simply traversed). It seems that the AST could be immutable, but, to be on the safe side,
accessors that modify the state will be provided. It is very probable that an unforeseen feature will require mutability. A preliminary
interface is shown in the Class Diagram in Figure 6.

Figure 6: AST Design with Preliminary Interface

Note that a number is always stored as a float internally, even though its interface support integers. Integers will be converted
to floats. Also, the column value is represented as an int for efficiency, even though it will be displayed as a string (e.g., A5).
A converter from integer to the appropriate string representation and its inverse will have to be provided. Why isn’t the column
value directly stored as a string? Because it is likely that the spreadsheet will be represented, at some level of abstraction, as a two
dimensional array. Thus, if the column is stored as a string, it must be converted to an int time and again to resolve references.
Also, when moving formulas from cell to cell, operations to update relative references will be performed. This will again require
a conversion from string to int. The only time a column reference needs to be converted to a string is when it is displayed. It is
probable that many unforeseen applications will require arithmetic operations on cell coordinates (e.g., in the GUI) and converting
from a string to an int in each of these cases would be a complete waste of effort. Thus, we opt for a column stored as an int in
CellRef. These methods will be needed by at least one other module (the GUI needs to diplay columns as strings), so they need to
be accessible. It would be possible to declare them class methods in CellRef, which is almost equivalent to declaring them global.
These methods are somewhat like math functions, as they do not really belong in the AST module, nor in any other module. Thus,
we will opt for defining them in as a Utility class: ColumnConvertUtility shown in the Class Diagram in figure XX.

Also, an attribute keeping track of parentheses is added to ASTNode: the string representation of the AST will retain all the parentheses
entered by the user. Of course, it would be possible to compute the optimal string representation by removing superfluous parentheses.
For example, (2*3)+3 could be written as 2*3+3. However, the user may want to keep those parentheses in certain formulas;
anticipating later modifications, so we will support that. Note that RangeRef does not support parentheses (range references are not
found in expressions, only in function arguments). An error should be raised if set/getNumParen is called by a RangeRef object.
The RangeRef class also has a method that returns a collection of all the cell references contained in the range: this method always
returns the cells in a unique order, from top to bottom and from left to right, independently of the range limits.

Some methods need to be added to the previous design, which only describes the static structure of the AST. In particular, operations,

6.2 Prototype 1: Abstract syntax tree 9

such as clone, equals, evaluate and toString could be provided. However, many operations on the AST will be needed by other
components in the future: export to permanent storage, copy an AST from a cell to another, compute cell dependencies, etc. It would
be very nice to have a mechanism to “objectify” those operations and facilitate their implementation. The visitor pattern does exactly
this.

Figure 7: Visitor for the AST

The visitor pattern “visits” each node of the AST and executes an action appropriate for the visited node type. Note how the visitor
pattern introduces an accept method in ASTNode (Figure 8). Each time a node instance of a class XYZ is visited, its accept method
is called by the visitor. This method executes the appropriate action by calling the appropriate visitXYZ method in the visitor. To
demonstrate this, the Class and Activity Diagram of an objectified “toString” operation are shown in Figures 7, 8 and 9. This is a
little exaggerated since “toString” could have been added to ASTNodes interfaces directly without any harm. Still, we opt for this
approach to show how to apply the visitor pattern. This is the template for adding other operations on the AST.

In the collaboration diagram shown in Figure 9, it is clear how the operation is performed: the AST is visited in a depth first manner.
The terminal nodes are stringified first and the resulting strings are assembled to stringify the composite nodes, eventually yielding
the final string representation of the AST. It is in the functions visitXYZ that the actual stringifying occurs, thus the implementation
of toString is external to AST: we have objectified an operation that can be compiled, tested and maintained separately. Note that
a method toString was added to the abstract class ASTNode. This is to simplify the use of the visitor, this method simply creates
a visitor, applies it to itself by calling accept and returns the result. This method is completely optional since the visitor could be
created externally to the ASTNode instance. It is there to simplify toString usage. Also note that the string representation for built-in
operators (+,/, ,∗) is handled differently than for normal functions (min,max). The infix notation is used whenever possible. For
instance, sum(4,5,3) will always be represented as 4+5+3 (However, sum(A1:A5) must be represented with the prefix notation). It
could be possible in the future to add another visitor that provides only prefix notation, if we find it necessary. The methods clone
and equals were added to the design. Clone will mostly be used to preserve encapsulation. Equals returns true whenever the AST
structure is exactly the same (mostly used in testing). Note that two ASTs evaluating to the same value are not necessary equal (e.g.,
AST(2+3).equals(AST((2+3))) is false).

Another subject that needs to be discussed is the pre-conditions of the interface. For instance, should CellRef allow negative values
for its rows/columns? Since it is not exactly known in advance what is allowed or not, AST’s interface will not be constrained.
Constrants will be enforced by the parser, which will produce a valid tree with respect to its grammar.

6.2.4 Testing & Implementation

The testing suites of the first prototype can be found in the directories ../ast/test and ../utility/test (for ColumnConvertUtility).
The suites tests several classes and functions for success and failure:

• The features that are tested:

• Number
• CellRef
• RangeRef
• Function
• ColumnConvertUtility

• Testing each feature for success, failure and sanity.

• Function: Ensuring that getArgs returns a cloned value of its list, not a direct reference. Reason: User should not be
able to append to the list directly, but should be forced to use the interface. Note, getArgs does not clone the elements
of the list (not “deep copy”).

6.2 Prototype 1: Abstract syntax tree 10

Figure 8: AST with updated interface to support the visitor pattern

• Testing that a TypeError is raised if an invalid argument is passed to a method.

In the test suite, several sample sets are defined for success and failure. For instance, to test the AST module, we have sets of values
that can be used to create Number, CellRef, RangeRef and Function objects. Each sample in the set consist of a tuple of elements.
The first n elements are the inputs needed to test a feature, the last element(s) is(are) the expected output. A feature is a set of
functions which, given input, provide output. For example, the first sample of the Number set could be (5, 1, “=(5)”). When testing,
Number(5,1) is instantiated and it is tested for success by verifying that the string representation is “=(5)”. In this case, the feature
consists of two functions, the constructor and toString(). In theory, a set of inputs needs to be provided for every feature. Still,
some features are trivial, such as all the accessors (get/set). In order to tests them, random (but reproducible) input is generated on
the fly.

Also, a set consisting of invalid inputs is provided for each feature that needs to be tested. The testsuite verifies that the expected
behavior is observed on bad input (i.e., appropriate exception raised). In particular, the manual typechecking is tested: the testsuite
ensures that a TypeError is raised when inputs with invalid types are passed to a method.

The implementation is straightforward, but little details need to be discussed. First, toString was renamed str (python auto-
matically calls str when an object is printed). Also, since Python does not support protected attributes, numParen was defined
as private and copy/pasted in the children classes along with the accessors.

6.3 Prototype 2: Formula Parser 11

Figure 9: Collaboration Diagram showing the execution order of the toString operation on the formula sum(5,mul(A1,10))

6.3 Prototype 2: Formula Parser

6.3.1 Problem Definition

In this prototype, we add the formula parser, which will interpret formula strings and generate an AST from it. This module will be
used by the spreadsheet data subject in order to “understand” formulas and evaluate them.

6.3.2 Detailed Requirements

Cell References:

• A base-26 system is used for the cell references. The first 26 columns are marked with A-Z, Then, the next 26 columns are
marked AA-AZ, etc. (must-have)

• References are uppercase internally (simpler). (must-have)
• Convert lower case references to upper case automatically for the user. (good)

Functions:

• Functions are not case sensitive, which is easier for the user. (good)
• Functions must be very easy to add by the programmer. (must-have)
• Function definitions can be added by the user statically (e.g., within a file). (good)
• Names of the functions should be small, which is easier to use. (must-have)
• Minimum set of functions: min,max,avg,med. (must-have)
• Aliases could be provided, such as minimum=min. (good)

General:

• A grammar is needed to formally describe a language for formulas.
• Functions can be used as operands and can be nested inside other functions. (must-have)
• Functions have an unbounded number of arguments. (must-have)
• Range references cannot stand by themselves. They must be an argument of a function. (must-have)

6.3 Prototype 2: Formula Parser 12

• To support the 25000 cells requirement, 4 digits are allowed for the rows (up to 9999) and 3 letters are allowed for the columns
(up to 17576). Must be easy to change (e.g., via configuration file, make). (must-have)

We now need to formally specify DSheet formulas. Traditionally, a scanner is the module which will recognise the words of a
language. For example, “for”, “while”, “int”, “float”, “struct” would be valid words recognised by a scanner for the programming
language C. To formally specify what tokens or words are accepted by a scanner (i.e., the requirements of a scanner), the regular
expression notation is used. The syntax of a given regular expression uses a few simple operations on the characters of an alphabet:

a an ordinary character stands for itself
ε The empty string

another way to write empty string
M|N Alternatives, M or N
M ·N Concatenation, M followed by N
MN Another way to write concatenation
M∗ Repetition, zero or more times
M+ Repetition, one or more times
M? Optional, zero or one occurrence

[a− zA− z] Alternatives in a set of characters, calculates a contiguous range
. A period stands for any single character except newline

“a.+∗” String in quotes stands for itself literally

For example, valid expressions could be

“while” Represent the string “while”
[a− z][a− z0−9]∗ Represent legal variable

names in a programming
language

[0−9]+ Represent an integer number
([0−9]+ ”.”[0−9]∗)|([0−9]∗ ”.”[0−9]+) Represent a floating point number

Thus, a regular expression will have to be specified for each legal token that can be in a cell formula. First, a representation for a
number, which is either an integer or a real, is needed. The legal characters will be letters. The legal strings will be a combination of
characters and integers. A reference to another cell is simply a combination of letters, numbers and $. Finally, binary operators such
as “+” are also legal tokens. The scanner specification for the formulas is summarized in the following table:

int [0−9]+

real ([0−9]+ ”.” [0−9]∗)|(([0−9]∗ ”.” [0−9]+)
number int | real

char [a− zA−Z]
string [0−9]∗char+(char|[0−9])∗

ref [$]?[A-Z]·[A-Z]?·[A-Z]?[$]?[1-9][0-9]?[0-9]?[0-9]?
rangeref ref ’:’ ref
addop [+−]
mulop [∗/]
expop [ˆ]

funcname char+

lpar “(”
rpar “)”

comma “.”
equal “=”
text All strings that do not start by ‘=’

The scanner will break an arbitrary stream of characters into a stream of individual legal tokens. When trying to match a token,
the scanner will always return the longest possible match. For instance, if it receives the input 1123.235, it will not stop at 1 and
return an int token, but will continue to match the longest token, which will be a real in this case. Now, requirements that define
legal words in a cell have been settled, but another module is needed to verify that the tokens are in the correct order. Traditionally,
this module is called a parser and its requirements are specified via grammars. A grammar, G, is a structure 〈N,T,P,S〉 where N

6.3 Prototype 2: Formula Parser 13

is a set of non-terminals, T is a set of terminals, P is a set of productions, and S is a special non-terminal called the start symbol
of the grammar (In this document, the first non-terminal of a grammar is considered to be S). For example, the following grammar
recognise simple addition expressions (e.g., 4+5+4+832;):

PROG → EXP ;

EXP → EXP addop EXP | int

In the example, non-terminals are written in uppercase while terminals are written in lowercase (grammars will always be described
like this in this document). There must a production for each non-terminal, which evaluates to a terminal at some point (to avoid
infinite recursion). One can also notice the link between a parser grammar and the corresponding scanner: the tokens produced by the
scanner correspond to the terminals of the parser’s grammar. In order to parse a stream of tokens, the parser will query the scanner
for the next token and verify whether it is legal with respect to the current production. For instance, in the previous example, the input
4+5+a would fail, because the token a, which is a char does not correspond to a terminal in the production EXP (the only terminal is
int). Next follow the grammar for the parser of DSheet:

FORMULA → equal EXP

EXP → EXP addop T ERM | T ERM

T ERM → T ERM mulop EXPONENT | EXPONENT

EXPONENT → EXPONENT expop SIGNEDFACTOR | SIGNEDFACTOR

SIGNEDFACTOR → ′−′ FACTOR | FACTOR

FACTOR → l par EXP rpar | number | FUNCT ION| re f

FUNCT ION → f uncname l par (ARG | ε) rpar

ARG → (rangere f | EXP) ENDARG

ENDARG → comma ARG | ε

6.3.3 Testing Strategy

The parser should be tested as follows:

• For success: assert that a given formula produce the expected tree
• Failure: assert that invalid formulas are not parsed and that an error message is produced
• Sanity: ensure that the string representation of an AST is equal to the parsed string. Also, assert that, when re-parsed, the string

representation of an AST yields the same AST.

6.3.4 Design

The actual parser will be generated automatically by a parser generator given the grammar specification. Since parser generation is
implementation specific, it will not be discussed in detail here. Please refer to the implementation section for a detailed example.

Once the parser is generated, a FormulaParser class, with a parse method, should be provided to encapsulate the automatically gen-
erated parser. This class will produce a parse tree: a non-optimal tree containing all the grammar artifacts. This tree is an aggregation
of parse nodes, each labelled with a given grammar (non-)terminal. The parse tree can be seen as a a record of the grammar rules
that were applied when parsing. A parse node with a label “X” is created each time a (non-)terminal “X” is encountered. When the
parser reaches a terminal, the variable “value” of the parse node is used to store the terminal. The parse node could be implemented
as a struct in C or as a class with public attributes in any OO language. The parse tree needs to be simplified into an Abstract Syntax
Tree where all redundant information has been stripped, making it easier to process. As seen in Figure 11, the tree will be reduced
by removing all the non-terminal nodes and replacing them by Function nodes.

As seen on the UML diagram of Figure 10, to parse a formula, one simply needs to call “formulaToAST”. This method will call the
parser and transform the retrieved parse tree into an AST (via the private method constructAST).

6.3.5 Testing & Implementation

In this module, only one feature needs to be tested: the parser. In order to test if the AST structure that was generated by the parser is
correct, a simple evaluator visitor was written. This visitor evaluates simple expressions without cell references. The first test parses
such expressions and verifies that each of them evaluates to the correct value. In the second test, the expected AST structure was
manually constructed. The test simply ensures that the tree that is returned by the parser is equal to the expected AST. The next tests

6.3 Prototype 2: Formula Parser 14

Figure 10: UML Class diagram for the formula parser

uses the built-in string representation (equivalent to pretty-printing). It ensures that the string representation of the returned AST is
equal to the parsed string. A sanity test is also applied: if re-parsed, the string representation should return an AST which is equal to
the original AST. Finally, the parser is tested for failure: invalid formulas are parsed and the testsuite verify that the parser returns an
error. Please see the directory formulaparser/test/ for more details.

YAPPS, Yet Another Python Parser System, was used to generate the formula parser. This system is very simple and generates
human readable Python output. YAPPS produces recursive descent parsers, so the LALR(1) grammar that was specified in the
requirements was converted to a LL(1) grammar. In a recursive descent parser, each non-terminal is mapped to a function. In or-
der to parse, each function recursively calls other functions representing the non-terminals in the rule specification. For instance,
EXP → T ERM add T ERM could be encoded as:

def EXP():
TERM()
scan("add")
TERM()

A recursive descent parser cannot handle one or more rules having themselves as the first non-terminal of their definitions. For
instance, a rule like EXP → EXP add T ERM would cause infinite recursion (this problem is called left recursion). Our grammar
was transformed into one without such rules, a LL(1) grammar. To achieve this, we replaced left-recursion by right-recursion and
ensured that all the rules can be identified with one look-ahead token. For instance, the first rule was converted like this:

EXP → EXP addop T ERM | T ERM

EXP → T ERM REST T ERM

REST T ERM → addop T ERM REST T ERM | ε

YAPPS supports regular expression-like syntax to reduce the number of rules in the LL(1) grammar. It is possible to use the “*” or
“+” notation to describe lists of (non-)terminals. With this notation, EXP and RESTTERM rules can be merged:

6.4 Prototype 3: DataSubject 15

Figure 11: A sample parse tree and its reduced AST form for the formula 5+4

EXP → T ERM (addop T ERM)∗

Applying this technique for every rule yields the final LL(1) grammar:

EXP → T ERM (addop T ERM)∗

T ERM → EXPT ERM (mulop EXPT ERM)∗

EXPT ERM → SIGNEDFACTOR (expop SIGNEDFACTOR)∗

SIGNEDFACTOR → FACTOR | sub FACTOR

FACTOR → l par EXP rpar | number | FUNCT ION

FUNCT ION → f uncname l par ARG rpar | f uncname l par rpar

ARG → (rangere f | EXP) (comma (rangere f | EXP))∗

FORMULA → equal EXP

The specification of this grammar for YAPPS can be found in the file FormulaParser.g. All capitalized and lowercase artifacts are
non-terminals and terminals, respectively. Note that there are slight discrepancies with respect to the design. For instance, addop was
divided into two separate operators, add and sub to perform the correct actions with YAPPS: choose between creating a sum or an
invSum parse node. A similar transformation was performed on mulop. The implementation was generated automatically by YAPPS
and can be found in the file FormulaParser.py.

6.4 Prototype 3: DataSubject

6.4.1 Problem Definition

In this prototype, the module for handling data is added: the datastructure for representing the spreadsheet will be implemented.
Once it is completed, it will be possible to create spreadsheets and modify their contents. Note that there is still no GUI

6.4 Prototype 3: DataSubject 16

6.4.2 Detailed Requirements

General:

• formulas must be evaluated. (must-have)
• cycle of references must be detected. (must-have)
• it must be possible to set/get/delete the data contained n one or more cells. (must-have)

Performance:

• Theoretically, there are no spreadsheet size limit. In practice, interaction with the spreadsheet must be real-time when the total
number of cells is smaller than one million. (must-have)

Commands:

• unlimited levels of undo/redo. (must-have)
• copy/paste. (must-have)
• insert cells/rows/columns. (optional)
• select a row/column or all cells. (good)
• search/replace (optional)

Evaluation Errors:

• Special values indicating the kind of error must be displayed in the cell(s) containing the error. (must-have)
• Only the cells that needs to be edited in order to fix the error should contain a special value. (must-have)
• Display the error flag in the part of the formula where the error occurs, to minimize correction work. (good)
• Empty cells are considered as 0 in the evaluation mechanism. (must-have)
• Cycles should not block the evaluation of cells outside the cycle. (must-have)

6.4.3 Testing Strategy

This module is significally larger than the previous ones. Classes will be topologically sorted by dependencies and tested in that
order for success and failure. Sanity tests will be applied where possible.

6.4.4 Design

The first class that is needed in the DataSubject module is one which encapsulates the data and provides an interface for interacting
with it. SSheetData will encapsulate an m×n chart of SSheetCell instances. The class SSheetCell will hold the data entered in
individual cells. Two types of data can be entered: a formula or a string (a string does not start with “=”). If a formula is entered, it
must be parsed into an AST and evaluated to a float value. Otherwise, the string is trivially “evaluated” to a string value. In summary,
SSheetCell contains the following information:

Field Type Default Value Description
formula string empty Hold the formula string

ast ASTNode null Hold the AST representation of a formula
value string or float (union) float: 0.0 If there is a formula: Hold the evaluated float value

string: empty Otherwise: Hold a string value (non-formula data)

None of the three field is mandatory. Depending on the situation, one or more fields will be used:

Data entered formula field ast field value field
a formula (e.g., =3+4) used created using the parser created using the cell evaluator (float)
a string (e.g., marc) not used not used used (string)

an ast created using ast.toString() used created using the cell evaluator (float)

Thus, a formula is parsed within SSheetCell. Note that reparsing can be avoided if an ast is used directly. This approach will be
used to update cell references while pasting (explained later). The UML diagram in Figure 12 shows a preliminary interface for the
DataSubject. Note that the class SSheetState is used to modify and retrieve the state of SSheetData. It is an independent layer
between the DataSubject and its observers. It hides the internals of the DataSubject because it contains only the information used

6.4 Prototype 3: DataSubject 17

to create SSheetCell instances. This is done mainly to avoid parsing the formulas outside of the DataSubject (this reduces the
dependencies between the modules).

The choice of the datastructure to be used in SSheetData is very important. A good choice imply good performance and ease of
maintenance. Next follows a chart summarizing the performance of possible datastructures. Note: the word cell is used to denote a
SSheetCell instance. The following factors are used to compare them:

• Adding a cell to the datastructure
• Retrieving a cell from the datastructure
• Deleting a cell from the datastructure
• Retrieving a range of cells from the datastructure. (i.e., all the cell in between the cells (x,y) and (x+k,y+u))
• Resize needed? Does it need to be completely copied inside a larger memory location sometimes?
• Memory Usage

DataStructure Addition Retrieval Deletion Range Retrieval Resize? Memory
Array O(1) O(1) O(1) O(1) Yes (outside scope) Maximal
Sorted Linked List O(log(n)) O(log(n)) O(log(n)) O(log(n)) No Minimal
Hash Table O(1) O(1) O(1) O(n) Yes (Fixed Num keys) Medium
Hash Table (with sorted keys) O(log(n)) O(1) O(log(n)) O(log(n)) Yes (Fixed Num Keys) Medium

From the data of the previous chart, we deduce that an array of references to cells is the best solution with respect to operations
on the cells. Its main disadvantage is that it needs a lot of memory because it must be resized when a cell is added outside of its
scope. Thus, performance can be dramatically affected when an array is used and the cells are spreaded. A solution to solve the resize
problem is to use a linked list. This approach has no resize and uses a minimal amount of memory, but its performance is average
for every operation. The hashtable support spreaded cells and maintains good performance for the operations. Indeed, its resize is
independent of the keys used to map the cells. However, this solution comes with a price: range requests on hashtables are executed
in linear time instead of constant time. Assuming that range requests are significally rarer than single requests, this solution is good.
Range requests can be improved if the keys of the hashtable are sorted. This maintains constant retrieval time, but worsens addition
and deletion. The choice of the datastructure is based on usage assumptions:

Data Quantity Data Behavior Range Requests Solution
High – Common Array
High – Rare Array or Hashtable

Medium Dense Common Array
Medium Dense Rare Array or Hashtable
Medium Spreaded Common Array or Hashtable
Medium Spreaded Rare Hashtable

Low – – Linked List

Overall, the hashtable behaves better than other datastructures. We will opt for this datastructure in SSheetData. The hashtable will
map a CellCoord object, which simply encapsulates a column and a row, to a SSheetCell instance. The CellCoord object must
provide a hash function that will be used by the hashtable. SSheetState will also use a hashtable mapping a CellCoord instance to a
tuple containing the cell value, the formula string and the ast of a given cell. Note that a CellCoord that is not mapped in the hashtable
represent an empty cell. Thus, SSheetState will return default empty values when it is queried with an unmapped CellCoord. For
efficiency, SSheetData.setState takes a state which contains only the modified cells. The following chart summarize the action
performed by setState depending on the input:

CellCoord exists? Formula String AST CellValue Action Performed
no empty null null Do nothing
yes empty null null Remove the cell
yes non-empty null — Set the formula, parse and evaluate
yes — non-null — Set the formula (str(ast)) and evaluate
yes empty null CellValue(stringValue=non-empty) Set the value and evaluate

The next feature that need to be designed is the formula evaluator. This evaluator will interpret each ast of SSheetData by computing
the mathematical result of the corresponding formula. Since a formula can refer to other cells (e.g., =4+A3), the evaluator will need a
reference to SSheetData to evaluate it. The naive approach to resolve cell references is to query SSheetData in an undefined order.
For instance suppose we have the following spreadsheet:

6.4 Prototype 3: DataSubject 18

Figure 12: Preliminary interface of the DataSubject

– A B C
1 =B2
2 =C3
3 =5 =A3

Suppose the formulas are evaluated in this order: A1, B2, C3 and A3. To evalutate A1, three references must be resolved. Then, when B2
is evaluated, the evaluator must know if C3 and A3 were already processed. Otherwise, it will unnecessarily resolve two references.
One approach to solve this problem is to mark cells that were already evaluated. An even better approach is to evaluate the cells
topologically. That is, to first sort the cells such that they can be evaluated without having to resolve references more than once. In
the above example, if A3 is evaluated first, then C3, B2 and A1, each reference will be resolved only once. In general, such an order
is obtained by sorting the cells as follows: a cell c j is considered bigger than ci if ci depends on c j. The topological sort approach
is better because it is needed to solve another problem: cycles in the references. The evaluator will enter an infinite loop if there is a
cycle in the references. Thus, it must know in advance which cells are member of a cycle so it will not try to resolve them. Tarjan’s
algorithm [2] was implemented to detect cycles. The description of the algorithm can be found in Algorithm’s 1, 2, 3, 4 on page 31.

The formula evaluator uses two Visitor subclasses, EvalVisitor and InfluencerVisitor. InfluencerVisitor is used just
after a formula is parsed to determine the influencers of the cell (i.e., the cells that are needed for evaluation). When this visitor
visits a CellRef or a RangeRef, it adds the corresponding CellCoord to a list. A new method, getInfluencers() is added to
SSheetCell interface to retrieve the CellCoord instances. With these, EvalVisitor is able to resolve cell references by querying
SSheetData. Note that EvalVisitor assumes that the cells are evaluated in topological order. In other words, it does not call itself
recursively, but retrieves the value of the referred formula, which was evaluated beforehand. The interfaces and dependencies of
EvalVisitor and InfluencerVisitor are shown in Figure 13. The tasks performed by EvalVisitor is given in Algorithm 5.
This algorithm detects errors in the formula as it tries to evaluate it. The evaluation algorithm will set the value of the erroneous cell
to an error flag (to nofity the user without disturbing him too much). The possible errors and their respective flags are described in
the following chart:

6.4 Prototype 3: DataSubject 19

Type of Error Explanation Flag
Value A function is called with non-formulas argument #VALUE!
Ref A reference is outside of the spreadsheet’s boundaries #REF!

Name A function name does not exists #NAME!
Cycle The formula is member of a cycle #CYCLE!

Each time SSheetData is modified (for now, via setState), it is re-evaluated. The evaluation is done for the whole spreadsheet,
though it might be possible to evaluate only the region that is affected by the modification (reachability analysis). This approach will
be investigated in the future. The evaluation algorithm is described in Algorithm 6.

Figure 13: DataSubject with evaluate

What operations must be supported by SSheetData apart from modifying/retrieving the state? In the requirements, we see that
at least copying and pasting a range of cells should be supported. Should SSheetData support such commands or should they
be implemented in the user interface? We argue that the former approach is better. Suppose we want to support multiple user in-
terfaces for different type of users. One would have to re-implement the commands for every possible user interface. It is much
better to separate the data from the user interface since it improves modularity. It must also be possible to undo and redo all the
operations that are applied on SSheetData. A naive approach to support undo/redo is to add two methods, undoX and redoX, for
each command that is added to SSheetData. Thus, to support paste, the methods undoPaste and redoPaste would be added.
This approach add complexity to SSheetData and reduce modularity. SSheetData is now responsible of managing the cells and
the undo/redo algorithm. A better approach is to objectify the commands. A Command interface provide three methods: execute,
unexecute, and reexecute. Concrete commands (such as copy, paste, etc) implement the Command interface and are created by a

6.4 Prototype 3: DataSubject 20

client. Each command has a reference to a receiver onto which the command is executed. In our case, the receiver is the hashtable
and the client is SSheetData. In figure 14, we see the updated design with the Command pattern. There is a set of concrete com-
mands, along with a special command: CommandContainer, which is an aggregation of commands. This class simply manages
which function to call (e.g., paste.unexecute() or setcells.unexecute()) depending on what command was executed last.
At instantiation time, SSheetData creates a public CommandContainer object. This allows the invoker (the user interface) to exe-
cute commands (e.g., commands.executeCopy(), commands.executePaste()). It is now possible to add new commands without
modifying SSheetData interface.

Figure 14: SSheetData with Command design pattern

The approach that was just presented goes a bit too far. First of all, at the lowest level, there is only one action that is performed on
the hashtable: setting the value of a cell. For instance, the command paste sets the value of several cells to achieve its goal. Thus, a
simpler design should contain only one command, SetCells, which takes a SSheetState as an argument. SetCells stores the cells
affected by the SSheetState instance and updates the hashtable. Other commands, implemented as methods in SSheetData, will call
SetCells to achieve their goal and will support undo/redo for free. This approach has three main advantages:

1. It greatly simplify the design: several command classes merged into one.

2. Avoid the need to code an undo/redo algorithm for every command.

3. It maintains modularity: all the undo/redo mechanics are still external SSheetData.

Now, methods must be added to SSheetData instead of to CommandContainer to support new commands. We argue that this is
not less modular. The core of the algorithm that is not related to SSheetData (undo/redo) is implemented in SetCells. And all the
commands that will be implemented in SSheetData are related to data management: move, copy, delete, set, search, replace, etc. The
approach using CommandContainer ungroup related methods wheras the refactored approach (see Figure 15) maintains cohesion.

Now, the implementation of copy/paste needs to be discussed. References must be updated while moving a formula from one cell to
another to reflect the new context. In order to achieve this, CopyPasteVisitor updates the cell references of the ast which is moved.
It visits the ast and add the difference between the source CellCoord and the destination CellCoord to the CellRef instances.

SSheetData main role is to hold the spreadsheet data. In the next prototype, the user interface will be added and will observe this
data. One of the requirements of DSheet is to have multiple view observing the same data. A design pattern, the Observer Pattern,
allows an unlimited amount of observers kept in synch with one or more subjects. In our case, SSheetData is the subject and will

6.4 Prototype 3: DataSubject 21

Figure 15: SSheetData with refactored Command pattern

notify all of its observers each time it is modified. Then, the observers will retrieve the new state of the subject and update their view.
The Class Diagram of figure 16 shows the static structure of the observer pattern. SSheetData implements the Subject interface.
Three new methods are required: attach, detach and notify. The two first methods are used to register and unregister observers
from the subject. Once an observer has registered to the subject, it will be notified that the state has changed via the nofity method,
which calls the update method of every registered observer.

6.4.5 Testing & Implementation

Several features need to be tested in this prototype. The approach that we have taken is to test each class independently. First, the
classes are sorted by dependencies, then they are tested in that order for success, failure and sanity. The following features were
tested:

• CellCoord
• CellValue
• InfluencerVisitor
• SSheetCell
• SSheetState

6.5 Prototype 4: Graphical User Interface (GUI) 22

Figure 16: SSheetData with observer pattern

• Functions
• CopyPasteVisitor
• EvalVisitor, SetCells, SSheetData

Since EvalVisitor and SSheetData are mutually dependent, they must be tested simultaneously. Also, SetCells exposes its output
only via SSheetData, so they were tested together. Each feature was tested for success by ensuring that the expected output was
produced on given input. Sanity tests were applied in the last feature with undo/redo. Please refer to the file /test/testsuite.py
for more details. Note that the tests are not necessary executed in the expected order (though they were written in this order) because
pyUnit executes them in an undetermined order. Some notes about the implementation:

CellCoord was implemented as a class having two private attributes, col and row. Two methods, col() and row() return the
corresponding values.

A CellValue is constructed with two facultative arguments, valueFloat and valueString. If None of them is specified, the instance is
undefined. If one of them is specified, the instance is of the corresponding type, Finally, an error is raised if both of them are specified
(a CellValue instance is either float or string).

6.5 Prototype 4: Graphical User Interface (GUI)

6.5.1 Problem Definition

Now follow a description of a GUI determined with the help of the the previous use-cases and other similar tools. Since many
spreadsheets are already available, the GUI of DSheet should follow their standard. It is very important, when designing a GUI, to
consider the fact that the user is usually already used to a particular type of interface. In practice, it is better to stick to the usual
interface patterns and not try to reinvent the wheel. If two available tools provide the same functionality, the one with the shortest
learning curve will certainly be more appreciated by the user. Of course, it is still necessary to discuss these issues with the user,
but by always starting with what is usually done in similar tools. In this case, the tool is far from new, so it will simply follow what
is expected from such a tool. A picture (fig. 17) from the open source spreadsheet “gnumeric” is provided to help understand the
textual requirements.

6.5.2 Detailed Requirements

must-have requirements (from use-case 1):

• The interaction with the application is divided in two.
• In the top of the tool, we have the traditional pulldown menus.
• Just under the icons comes the sheet, which is a square of m by n cells.
• The horizontal axis is enumerated using letters (A,B,C,...)
• The vertical axis uses numbers (1,2,3,..).
• Multiple views of the same data.
• Multiple independent sheets (that could have multiple views).
• The formula of the cell under the mouse must be displayed under the pulldown menus.
• There is, at all time, a cell that is selected. Events modifying a given cell will be applied on this cell.
• Mouse left button will activate pulldown menus and icons or select a given cell
• Keyboard arrows move the selected cell in the appropriate direction. The selected cell does not move if it would exit the sheet

boundaries. The Enter key move the cell down.
• Multiple cells can be selected by dragging the mouse over them.
• At least one cell will always be selected (To ensure that commands will always have a cell input). (must-have)

6.5 Prototype 4: Graphical User Interface (GUI) 23

Figure 17: Gnumeric GUI

optional requirements:

• resize row/column
• format cell (font size, type, underline, etc)
• zoom
• shortcuts icons under the pulldown menus
• CTRL-F : search
• CTRL-R : search/replace

must-have requirements (from use-case 2):

• Double-clicking the left button of the mouse on a cell triggers cell editing.
• Cell editing is also activated as soon as a valid key is pressed. (A valid key is what is understood by the parser for formulas)
• There is a cursor showing where the next character will be inserted.
• The characters before and after the cursor can be deleted with backspace and delete, respectively.
• Text can be selected with the mouse, the cursor can be moved by clicking on another character.
• Any valid keyboard action delete the text selection before being applied.
• When the user is looking at the spreadsheet, the evaluated formulas are displayed. But, when a cell is edited, the actual formula

is shown.

Menus Requirements:

1. File

• New (must-have)
• Open (must-have)

6.5 Prototype 4: Graphical User Interface (GUI) 24

• Close (must-have)
• Save (optional)
• Save as (optional)
• Print (to .ps)
• Exit (must-have)

2. View

• Zoom (optional)

3. Edit

• Copy (must-have)
• Cut (must-have)
• Paste (must-have)
• Undo (must-have)
• Redo (must-have)
• Search (optional)
• Replace (optional)

4. Insert

• Insert Row (optional)
• Insert Column (optional)

Keyboard Shortcuts:

• CTRL-S : save
• CTRL-O : open
• CTRL-N : new
• CTRL-C : copy
• CTRL-X : cut
• CTRL-V : paste
• CTRL-Z : undo
• CTRL-Y : redo

6.5.3 Testing Strategy

6.5.4 Design

The graphical user interface is divided into two classes. The first class, SSGridView Static implements the static elements of the
GUI, such as menus, the spreadsheet’s grid, the black rectangle indicating the selected cell, etc. This class also provides an interface
for interacting with the static elements. This interface allows, for instance, to move the selected cell, add text to a particular cell,
undo/redo operations, etc. Another class, SSGridView Dynamic, calls the methods of SSGridView Static when user-triggered
events, such as mouse clicks, mouse move and keyboard keys, occur. SSGridView Dynamic will be the bridge between the static
part of the GUI and the statechart executing its behavior.

For the design of the GUI, we will assume that the implementation is using a library supporting the following features:

• A canvas, where it is possible to draw geometric shapes such as lines, rectangles and circles. It must also be possible to draw
text.

• Built-in pull-down menus.
• System to handle keyboard and mouse events. More specifically, we will assume that, when it occurs, an event is passed to a

programmer-specified method call that will handle it.

The interface of SSGridView Static is directly determined by the requirements specified above. At the highest level, the require-
ments can be splitted into two categories: viewing the spreadsheet and editing the spreadsheet. While the user is viewing the spread-
sheet, the following actions can be performed:

• Move the selected cell

6.5 Prototype 4: Graphical User Interface (GUI) 25

• Select cell(s) and apply commands on them:

• Copy
• Cut
• Paste
• Delete

• Activate pull-down menus:

• New (new subject)
• Add Gridview (add observer)
• Print to .ps
• Copy
• Cut
• Paste
• Undo
• Redo

• Start editing a cell

Thus, the interface of SSGridView Static must have methods implementing those actions, as seen in the Class Diagram of figure 18.

Figure 18: Class Diagram including the methods used while viewing the spreadsheet

A few notes about the methods:

• addGridView could be used in conjunction with another method to query the user for parameters, such as width, height, cell
width, cell height, etc. The same technique could be applied with createNewSubject

• If the parameter passed to moveSelectedCellTo is outside of the bounds of the subject, an error is raised.
• extendSelectedCells increase the range of selected cells to include cellCoord, with respect to a pivot. The pivot is a cell

coordinate that is always a boundary of the range of selected cells. There is always a trivial range of cells that is selected: the
selected cell. When extendSelectedCells is called for the first time, a range of cell (selectedCell, cellCoord) is created. The
pivot is set to selectedCell. Commands can be applied on this range, or it can be resized. When the range is resized, the pivot
is used to create a new range of cells that is coherent with the previous one. unsetSelectedCells simply deselects the cells
and resets the pivot.

• pasteSelectedCells pastes the previously copied cells into the current selection.
• undo, redo, canUndo, canRedo are directly bound to the corresponding methods of SSheetData.

While the user is editing the spreadsheet, he is really editing a particular cell. The following actions can be performed when the user
edit a cell:

• Add a new character

6.5 Prototype 4: Graphical User Interface (GUI) 26

• Remove the previous or the next character
• Select character(s) and apply commands on them:

• Delete

• Commit the data and start viewing the spreadsheet

Again, the interface of SSGridView Static must support these actions, as seen in the Class Diagram of figure 19.

Figure 19: Class Diagram including the methods used while editing the spreadsheet

A few notes about the methods:

• getTextToEdit returns the text that needs to be edited at cellCoord. It queries the subject for the formula string or the string
value that is located at cellCoord.

• Text selection is specified in range of characters. Note that if multiple fonts are used, calculations need to be performed to
draw the range correctly.

• In drawCursor and increaseTextSelection, event overrides position and deltaX respectively when specified. For in-
stance, it is possible to draw the cursor where a mouse click event occured.

There is also a set of aesthetic requirements that need to be fulfilled. The cell which is under the mouse will be indicated to the user
by drawing a light blue rectangle around the cell. We will call this entity the over cell rectangle. The coordinates of the cell under the
mouse will be displayed in a label on the top of the sheet. Similarly, the formula or the string value of the cell under the mouse must
be displayed in a label on the top of the sheet. Four methods, moveOverCellTo, getOverCellCoord, setOverCellTextDisplay
and setOverCellCoordDisplay must be added to fulfill these requirements. Note that the overcell rectangle is always drawn around
the cell closest to the mouse pointer, even if the pointer is outside of the sheet.

The next step in the design is to model the behavior of the graphical user interface. As mentionned previously, the GUI has two high
level states: viewing and editing. Depending in which state the GUI is, a set of keyboard and mouse events can occur and a subset
of this set will affect the application. For instance, we know from the requirements that a double left click on a cell triggers editing
whereas a double right click does nothing. Thus, we must determine the events that are used in viewing and editing and model how
they affect the GUI. Next follows a list of meaningful events while viewing the GUI:

• Mouse Events:

• mouseClickL: single left button click
• doubleMouseClickL: double left button click
• mouseMove: mouse move
• mouseReleaseL: left button release

• Keyboard events:

• editKey: =, a-z, A-Z, 0-9, / !@#$%&̂*()- +;:’”,<>?[]
• upKey, downKey, leftKey, rightKey: corresponing keyboard arrows
• shiftPress: right or left shift press
• shiftRelease: right or left shift release
• controlC, controlV, controlX, controlZ, controlY: holding control button and pressing the corresponding key.

6.5 Prototype 4: Graphical User Interface (GUI) 27

The statechart of Figure 20 models the behavior of a user viewing the spreadsheet. Three states were needed, NotSelecting,
SelectingKeyboard and SelectingMouse. Each time a transition is fired in the statechart, a particular action must be executed.
For instance, if the event mouseMove occurs while the statechart is in Viewing.NotSelecting, the overcell rectangle must be
updated to reflect the new context. Similarly, if the event mouseClickL occurs in the same state, the selected cell must be moved to
the cell closest to the event. The interface of SSGridView Static will be used to implement these actions. Two events, editKeys
and doubleMouseClickL trigger the editing mode, which is modelled in Figure 21.

Figure 20: Statechart modelling the behavior of a user viewing the spreadsheet

In the following chart, the actions, which are executed after an event occurs, are described. A few notes about the chart. First, there
is no guard that ensures that there is a copy buffer when copying the cells, because copying an empty buffer has a meaning: copy
nothing. Also, canRedo() and canUndo() are used as guard to be able to enable/disable the shortcuts in the menus, as in professional
tools.

• Viewing

• Event controlY

• Guard: canRedo()
• Action:

1. Redo the next action.
2. If cannot redo anymore,disable the corresponding button in the menu.
3. Enable undo button

• Event controlZ

• Guard: canUndo()
• Action:

6.5 Prototype 4: Graphical User Interface (GUI) 28

1. Undo the previous action.
2. If cannot undo anymore, disable the corresponding button in the menu.
3. Enable redo button

• Event controlC

• Guard: None
• Action:

1. Copy the selected cells

• Event controlX

• Guard: None
• Action:

1. Copy the selected cells
2. Delete the selected cells.
3. Enable the undo button

• Event controlV

• Guard: None
• Action:

1. Paste the copy buffer into the selected cells.
2. Enable the undo button

• Event deleteKey

• Guard: None
• Action:

1. Delete the selected cells
2. Enable the undo button

• Event editKey

• Guard: None
• Action:

1. Draw the pressed key in the selected cell.
2. Draw the cursor in the selected cell.

• Event doubleMouseClickL

• Guard: None
• Action:

1. Move the selectedCell to where the click occured
2. Draw the cursor

• Event leftKey

• Guard: selectedCell.col() > 0
• Action:

1. Move the selected cell rectangle

6.5.5 Implementation & Testing

The GUI was implemented using python’s built-in Tkinter module. The structure of the implementation follows closely the design
presented in the previous section. The details of the implementation will be discussed here, in hope that it is useful for other im-
plementations. The following actions are performed when SSGridView static is instantiated. First, high level widgets are packed
together: the spreadsheet canvas where the cells reside, scrolls to move the canvas, menus and fields used to display the formula and
the current cell. Then, a set of private methods contruct the inital aspect of the GUI. Vertical and horizontal lines are drawn on the
canvas to create the set of cells 1. Two private array of integers, rows and columns, keep track of the position of every line, to support
resizing in the future. The private methods drawRows and drawColumns use those arrays to display the lines. Two private variable
hold the coordinates of the selected and over cell. Two corresponding private methods, drawOverCell and drawSelectedCell, can
be called to update the display by (re)drawing the rectangles at those coordinates. Other privates function are used to draw the column
and row indexes (i.e., A,B,C, 1,2,3) and their background. To manage text on the canvas, a hashtable maps CellCoord instances to
Text objects, which are built-in in Tkinter. There is also a similar hashtable for Font objects, anticipating customizable fonts in
the future (right now, the same font is used for every cell).

1The very first prototype used a rectangle. for every cell of the spreadsheet, but this approach turned out to be very inefficient.

29

Figure 21: Statechart modelling the behavior of a user editing the spreadsheet

SSGridView static also hold a reference to a SSGridView dynamic instance. This instance is the bridge between the static part of
the GUI and the DChart executing its behavior. Tkinter events are binded to the methods of SSGridView dynamic, which in turn
send the event to the DChart executed by SVM 2 [1].

7 Conclusion & Future extensions

Currently, the requirements specify the need for multiple views of the same sheet, but only locally. It would be very nice to have a
client/server mechanism supporting multiple network clients viewing the same data. This would involve some synchronization, but
it should be easy to extend the current local approach to a networked approach. Other observers, such as a plotter, will probably be
needed in a future version. The GUI should also support the following features for it to be professional:

• Resize columns and rows
• Add new columns or rows in-between existing ones
• Change layout properties of cell’s border
• Print
• Cell text format
• Zoom

It would also be very nice to have statistical analysis of the spreadsheet data and a linear programming solver.

2http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

REFERENCES 30

References

[1] Huining Feng. Dcharts, a formalism for modelling and simulation based design of reactive software systems. Master’s thesis,
Mcgill University, February 2004.

[2] R.E. TARJAN. Depth first search and linear graph algorithms. SIAM J. Comptg., 1:146–160, 1972.

REFERENCES 31

Algorithm 1 topoSort

global cells {datastruct containing the cells}
local mapping cellsLabelling
local list sortedList
for each cell in cells do

cellsLabelling.put(cell, NOT VISITED)
end for
for each cell in cells do

if cellsLabelling.get(cell) = NOT VISITED then
dfsSort(cell, cellsLabelling, sortedList)

end if
end for
return sortedList

Algorithm 2 dfsSort(cell, cellsLabelling, sortedList)
if cellsLabelling.has(cell) and cellsLabelling.get(cell)==NOT VISITED then

cellsLabelling.put(cell, VISITED)
for influencer in getInfluencersOf(cell) do

dfsSort(influencer, cellsLabelling, sortedList)
end for
sortedList.append(cell)

end if

Algorithm 3 strongComponents
global cells
sortedList = topoSort()
local mapping cellsLabelling
local list strongComponents
for each cell in cells do

cellsLabelling.put(cell, NOT VISITED)
end for
for each cell in sortedList.reverse() do

if cellsLabelling.get(cell) = NOT VISITED then
local list component
dfsCollect(cell, cellsLabelling, component)
strongComponents.append(component)

end if
end for
strongComponents.reverse() {return strong components in topological order}
return strongComponents

REFERENCES 32

Algorithm 4 dfsCollect(cell, cellsLabelling, component)
if cellsLabelling.has(cell) and cellsLabelling.get(cell)==NOT VISITED then

cellsLabelling.put(cell, VISITED)
for dependent in getDependentsOf(cell) do

dfsCollect(dependent, cellsLabelling, component)
end for
component.append(cell)

end if

Algorithm 5 EvalVisitor
local evalStack
if astNode is Number then

Push the float value on evalStack
end if
if astNode is CellRef then

if the CellRef is valid then
Resolve the cell reference.
if the cell does not exists then

Push the value 0.0 on evalStack
else

Otherwise, push the float or string value on evalStack
end if

else
Set reference error to true
Push the value 0.0 on evalStack

end if
end if
if astNode is RangeRef then

Recusively visit each cellref in the range.
end if
if astNode is Function then

Recursively visit each argument of the function
Pop the appropriate number of arguments from evalStack
if all the arguments are float values then

if the function exists then
Apply the function on the arguments

else
Set Name error to true

end if
else

Set value error to true
end if

end if

REFERENCES 33

Algorithm 6 Evaluate
global SSheetData sheet
sortedComponents = strongComponents()
local cycles
for component in sortedComponents do

if len(component)==1 then
local cell = component[0]
if cell in getInfluencers(cell) then

cell.setValue(0.0)
cycles.append(component)

else
if cell.getAST()!=None then

v = EvalVisitor(sheet)
cell.getAST().accept(v)
if v.hasError() then

if v.hasValueError() then
cell.setValue(VALUE ERROR FLAG)

end if
if v.hasNameError() then

cell.setValue(NAME ERROR FLAG)
end if
if v.hasRefError() then

cell.setValue(REF ERROR FLAG)
end if

else
cell.setValue(v.getEvaluatedValue())

end if
end if

end if
else

cycles.append(component)
for cell in component do

cell.setValue(0.0)
end for

end if
end for
for cycle in cycles do

for cell in cycle do
cell.setValue(CYCLE ERROR FLAG)

end for
end for

