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Outline

• Overview/Motivation

• Systematic Software Testing

• Systematic Software Testing of Model 
Transformations.

• Focus : Model differencing
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Overview

SUT

Testing

Code
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Code Model

Black box
White box
XUnit Frameworks

.............

Model Based Testing

Transf

Domain Specific Testing

Validate models
Multi-view Consistency Transformations
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Software Testing 

• Why are we testing ? (Test Objective) 

• What are we testing ? (SUT)

• How are we testing ? ( Test case selection)

• Testing oracles

• Testing process

• Test automation

4



Testing Activities

1. Generate Input test cases

2. Test Selection 

3. Test Execution

4. Test oracle - verdicts

5. Results visualization for debugging and 
reports.
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Why are we testing ?

• Functional testing

• Non-functional testing:

• Performance

• Reliability
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SUT

• Model Transformations artifacts:

• Textual Specifications

• Input/Output Meta Models

• Implementation:

• Code, Rule-Based .... etc.
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Test case selection

• Black box 

• White box

• Hybrid
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Test Case Selection
Black box

• Applicable to all languages 

• Input meta model coverage 

• Fleury et al:

• EMOF based MM.

• Coverage Criteria for Class Attributes, 
and Association End Multiplicities.

• Transformation specifications:

• Effective Meta Model.
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Test Case Selection
White box

• Language and tool specific

• Kuster et al :

• Business Process models implemented in 
java code.

• Conceptual Rules coverage => meta 
model templates as valid test cases.

• Constraint coverage 
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Test Case Selection
Hybrid

• Effective Meta Model:

• Input Meta model ( back box )

• Examine the implementation to enhance 
meta model (white box) .

• Sen et al 2008 : Combining knowledge into 
Alloy constraints, and generate possible 
inputs.
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Testing Oracles

• A function which produces a “pass/fail” 
verdict on the output of each test case.

• For each input, a corresponding output 
needs to be manually built.

• Complex, error prone, procedure

• Some scenarios require further analysis than 
syntactic equivalence to produce a verdict. 
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Testing Oracles

• Model Comparison

• Contracts : post conditions on 

• Patterns :  

• Model Fragments

• Apply to specific inputs 
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Test Design Automation

• Generation tools based on the Black box 
approaches

• Mutation tools:

• Sen et al 2006 : Himesis Mutation 
operators.
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Execution Automation

• Construction of test case

• Executing the transformation

• Producing a verdict on the output

• Results visualization and reporting
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Testing
Framework 

• By line et el :

• Endogenous transformations

• Assumes a unique identifier for 
comparison.

• Provides visualizations.

• Integrated in GME, and C-Saw 
transformation engine.
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TUnit

• “Model everything” = modeled .

• Supports model fragments and patterns.

• Supports time ( based on DEVS )

• Runs independently.

• Extends PyUnit.
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TUnit
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TUnit
• Semantics equivalence
• Example :
• Traffic 2 Petri Nets
• Compare 2 Petri nets
• Embed a transformation 
of PN to Reachability 
Graph
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Model Comparison

• Importance to MDE:

• Model Evolution 

• Version Control

• Transformation Testing 
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Model Comparison
Activities

• Identify criteria for matching model 
elements. ( Unique Identifiers, Matching 
attributes, same position... etc)

• Calculating and represent the difference. 
( Algorithm for matching, Edit Scripts )

• Visualize the differences. ( Coloring, 
Difference Models )
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Model Comparison

• Comparison is done on two models.

• Both models conform to the same meta 
model.
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Model Comparison
• Can be applied to:
• Abstract Syntax (Graph)
• Concrete Syntax 
• Abstract Syntax of the semantic domain
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Model Comparison

Concrete Syntax Comparison

M1

M2

toXML

toXML

Root

Segment1

Road0

Segment2

Traffic1 Road1 Road2

Root

Segment1

Road0

Segment2

Traffic1 Road1

XMLDiff
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Model Comparison

• Models can not always be represented using 
trees

• May have cyclical dependencies.

• Search algorithm dependent.
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Model Comparison

• Models are represented as Graphs.

• Graph matching is NP complete.

• Several workarounds have been proposed.
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Model Comparison

Does v2 in M1 Maps to v4 or v4 in M2 ?
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Graph Isomorphism
Problem

Does M1 Map to M2 ? ( are they 
isomorphic? )

M1 M2

1 2

3 4

5 6

7 8
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Model Comparison 
Approaches

• Static Uniques Identifier

• Each Model Element has A Global Unique 
Identity GUID

• GUID is the matching criteria.

• A simple sort would serve as the search 
algorithm. (Fast, Simple) 

• Environment, tool specific and dependent. 
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Model Comparison 
Approaches

• Dynamic Uniques Identifier (“Signatures”)

• Each Model Element have a function to 
generate its uniques identity.

• The signature function has to be specified 
by the user with guaranteed uniqueness.

• Related to using canonical forms.

• Language, Structure specific.

• Examples: XMLDiff.

[RFG+05]
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Model Comparison 
Approaches

• Language Specific

• Customized/Optimized for a specific 
language or a formalism.

• Utilizes domain specific knowledge.

• New Formalism = New full algorithm

• Examples: UMLDiff, State charts compare.
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Model Comparison 
Approaches

• Similarity Based 

• Assumes all models are typed attributed 
graphs.(or could be transformed to one)

• Nodes are compared according to their 
feature similarities. (structural, or user 
defined)

• work with any graph based models (meta 
model independent)

• Examples: SiDiff, DSMDiff .
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SiDiff

• Configurable for any model with graph 
structure.

• Models have to be first transformed into the 
internal representation ( Directed, typed 
graphs ).

• Users has to provide custom file for 
specifying nodes features to use in similarity 
matching, each with an associated weight.  
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SiDiff

• Three phases 

• Hashing phase where hash value for each 
element is calculated. ( rep as a vector )

• Indexing phase, creating S3V trees which 
can efficiently find, for a given element, 
the most similar elements in the other 
model.

• Matching phase where exact matches 
calculated by looping over each element 
of one model.
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DSMDiff

• Claims to work on any Domain Specific 
Language which where MM is in GME.

• Uses signature matching, combined with 
structural similarities.

• Supports hierarchical graphs.  

• Does not attempt to find optimal solution. 
( Greedy Algorithm )

• Does not support move
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DSMDiff

• Limitations :

• Can lead to incorrect solutions.

• Does not support move operations.

A
A'' A'

B
B''

B'
C C

M1 M2

36



Subgraph Isomorphism 
problem

• Find all possible 
occurrences of 
the pattern 
described in M1 
in the host graph 
M2.

• Is this related to 
Model 
Comparison ?

M1

M2
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5
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Subgraph Isomorphism 
problem

• NP Complete Problem => Use Heuristics

• Constraints solving problem.

• Backtracking.

• HVF by Marc Provost combines prunning 
techniques from many sources:  VF,  VF2 and 
Ulmann’s Algorithm.

• Can we re-use these techniques ?
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Subgraph Isomorphism 
problem

• Multiple Occurrences ? Multiple solutions ? one is 
optimal ? 

• Model Comparison: 

• Either of the models can be the subgraph. ( Size )

• Not all of the elements in subgraph should exist 
necessarily in the host graph ( Deleted Nodes ).

• More related to “Maximum Common Subgraph 
Isomorphism” problem.
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Maximum Common 
Induced Subgraph 

Isomorphism

• Induced Subgraph of graph G is : “ A set S of 
vertices of G, as well as the edges of G with 
both endpoints in S.” 

• Common Induces Subgraph of graphs G1 
and G2 is : ”is a graph G1,2 which is 
isomorphic to induced subgraphs of G1 and 
G2.”
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Maximum Common 
Induced Subgraph 

Isomorphism
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Maximum Common 
Induced Subgraph 

Isomorphism
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MCIS Algorithms

MCS 
Algoritms

Unconncet
ed

Conncetd

Aproximate Exact

Unconncec
ted

Connected

 Uses 
heuristics to 
“find” best 
solutions

 
Uses greedy 

approximations
to “predict” best 

solution

NP-
Complete :)
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Next ?

• Look into solutions for comparing chemical 
compounds.

• Attempt to find the most effective 
algorithms and heuristics.

• Implement such algorithm into TUnit 
framework.

• Additionally allow the user to specify 
domain specific similarity features to 
enhance the pruning.
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