
Challenges in testing
Model Transformations

Amr Al-Mallah

1

Outline

• Overview/Motivation

• Systematic Software Testing

• Systematic Software Testing of Model
Transformations.

• Focus : Model differencing

2

Overview

SUT

Testing

Code

Model

Code Model

Black box
White box
XUnit Frameworks

.............

Model Based Testing

Transf

Domain Specific Testing

Validate models
Multi-view Consistency Transformations

3

Software Testing

• Why are we testing ? (Test Objective)

• What are we testing ? (SUT)

• How are we testing ? (Test case selection)

• Testing oracles

• Testing process

• Test automation

4

Testing Activities

1. Generate Input test cases

2. Test Selection

3. Test Execution

4. Test oracle - verdicts

5. Results visualization for debugging and
reports.

5

Why are we testing ?

• Functional testing

• Non-functional testing:

• Performance

• Reliability

6

SUT

• Model Transformations artifacts:

• Textual Specifications

• Input/Output Meta Models

• Implementation:

• Code, Rule-Based etc.

7

Test case selection

• Black box

• White box

• Hybrid

8

Test Case Selection
Black box

• Applicable to all languages

• Input meta model coverage

• Fleury et al:

• EMOF based MM.

• Coverage Criteria for Class Attributes,
and Association End Multiplicities.

• Transformation specifications:

• Effective Meta Model.
9

Test Case Selection
White box

• Language and tool specific

• Kuster et al :

• Business Process models implemented in
java code.

• Conceptual Rules coverage => meta
model templates as valid test cases.

• Constraint coverage

10

Test Case Selection
Hybrid

• Effective Meta Model:

• Input Meta model (back box)

• Examine the implementation to enhance
meta model (white box) .

• Sen et al 2008 : Combining knowledge into
Alloy constraints, and generate possible
inputs.

11

Testing Oracles

• A function which produces a “pass/fail”
verdict on the output of each test case.

• For each input, a corresponding output
needs to be manually built.

• Complex, error prone, procedure

• Some scenarios require further analysis than
syntactic equivalence to produce a verdict.

12

Testing Oracles

• Model Comparison

• Contracts : post conditions on

• Patterns :

• Model Fragments

• Apply to specific inputs

13

Test Design Automation

• Generation tools based on the Black box
approaches

• Mutation tools:

• Sen et al 2006 : Himesis Mutation
operators.

14

Execution Automation

• Construction of test case

• Executing the transformation

• Producing a verdict on the output

• Results visualization and reporting

15

Testing
Framework

• By line et el :

• Endogenous transformations

• Assumes a unique identifier for
comparison.

• Provides visualizations.

• Integrated in GME, and C-Saw
transformation engine.

16

TUnit

• “Model everything” = modeled .

• Supports model fragments and patterns.

• Supports time (based on DEVS)

• Runs independently.

• Extends PyUnit.

17

TUnit

18

TUnit
• Semantics equivalence
• Example :
• Traffic 2 Petri Nets
• Compare 2 Petri nets
• Embed a transformation
of PN to Reachability
Graph

19

Model Comparison

• Importance to MDE:

• Model Evolution

• Version Control

• Transformation Testing

20

Model Comparison
Activities

• Identify criteria for matching model
elements. (Unique Identifiers, Matching
attributes, same position... etc)

• Calculating and represent the difference.
(Algorithm for matching, Edit Scripts)

• Visualize the differences. (Coloring,
Difference Models)

21

Model Comparison

• Comparison is done on two models.

• Both models conform to the same meta
model.

22

Model Comparison
• Can be applied to:
• Abstract Syntax (Graph)
• Concrete Syntax
• Abstract Syntax of the semantic domain

23

Model Comparison

Concrete Syntax Comparison

M1

M2

toXML

toXML

Root

Segment1

Road0

Segment2

Traffic1 Road1 Road2

Root

Segment1

Road0

Segment2

Traffic1 Road1

XMLDiff

24

Model Comparison

• Models can not always be represented using
trees

• May have cyclical dependencies.

• Search algorithm dependent.

25

Model Comparison

• Models are represented as Graphs.

• Graph matching is NP complete.

• Several workarounds have been proposed.

26

Model Comparison

Does v2 in M1 Maps to v4 or v4 in M2 ?

27

Graph Isomorphism
Problem

Does M1 Map to M2 ? (are they
isomorphic?)

M1 M2

1 2

3 4

5 6

7 8

28

Model Comparison
Approaches

• Static Uniques Identifier

• Each Model Element has A Global Unique
Identity GUID

• GUID is the matching criteria.

• A simple sort would serve as the search
algorithm. (Fast, Simple)

• Environment, tool specific and dependent.

29

Model Comparison
Approaches

• Dynamic Uniques Identifier (“Signatures”)

• Each Model Element have a function to
generate its uniques identity.

• The signature function has to be specified
by the user with guaranteed uniqueness.

• Related to using canonical forms.

• Language, Structure specific.

• Examples: XMLDiff.

[RFG+05]

30

Model Comparison
Approaches

• Language Specific

• Customized/Optimized for a specific
language or a formalism.

• Utilizes domain specific knowledge.

• New Formalism = New full algorithm

• Examples: UMLDiff, State charts compare.

31

Model Comparison
Approaches

• Similarity Based

• Assumes all models are typed attributed
graphs.(or could be transformed to one)

• Nodes are compared according to their
feature similarities. (structural, or user
defined)

• work with any graph based models (meta
model independent)

• Examples: SiDiff, DSMDiff .

32

SiDiff

• Configurable for any model with graph
structure.

• Models have to be first transformed into the
internal representation (Directed, typed
graphs).

• Users has to provide custom file for
specifying nodes features to use in similarity
matching, each with an associated weight.

33

SiDiff

• Three phases

• Hashing phase where hash value for each
element is calculated. (rep as a vector)

• Indexing phase, creating S3V trees which
can efficiently find, for a given element,
the most similar elements in the other
model.

• Matching phase where exact matches
calculated by looping over each element
of one model.

34

DSMDiff

• Claims to work on any Domain Specific
Language which where MM is in GME.

• Uses signature matching, combined with
structural similarities.

• Supports hierarchical graphs.

• Does not attempt to find optimal solution.
(Greedy Algorithm)

• Does not support move

35

DSMDiff

• Limitations :

• Can lead to incorrect solutions.

• Does not support move operations.

A
A'' A'

B
B''

B'
C C

M1 M2

36

Subgraph Isomorphism
problem

• Find all possible
occurrences of
the pattern
described in M1
in the host graph
M2.

• Is this related to
Model
Comparison ?

M1

M2

10

2

3

6

1

2

4

5

37

Subgraph Isomorphism
problem

• NP Complete Problem => Use Heuristics

• Constraints solving problem.

• Backtracking.

• HVF by Marc Provost combines prunning
techniques from many sources: VF, VF2 and
Ulmann’s Algorithm.

• Can we re-use these techniques ?

38

Subgraph Isomorphism
problem

• Multiple Occurrences ? Multiple solutions ? one is
optimal ?

• Model Comparison:

• Either of the models can be the subgraph. (Size)

• Not all of the elements in subgraph should exist
necessarily in the host graph (Deleted Nodes).

• More related to “Maximum Common Subgraph
Isomorphism” problem.

39

Maximum Common
Induced Subgraph

Isomorphism

• Induced Subgraph of graph G is : “ A set S of
vertices of G, as well as the edges of G with
both endpoints in S.”

• Common Induces Subgraph of graphs G1
and G2 is : ”is a graph G1,2 which is
isomorphic to induced subgraphs of G1 and
G2.”

40

Maximum Common
Induced Subgraph

Isomorphism

M1

M2

10

2

3

6

1

2

4

5

3
7

41

Maximum Common
Induced Subgraph

Isomorphism

M1

M2

10

2

3

6

1

2

4

5

3
7

42

MCIS Algorithms

MCS
Algoritms

Unconncet
ed

Conncetd

Aproximate Exact

Unconncec
ted

Connected

 Uses
heuristics to
“find” best
solutions

Uses greedy

approximations
to “predict” best

solution

NP-
Complete :)

43

Next ?

• Look into solutions for comparing chemical
compounds.

• Attempt to find the most effective
algorithms and heuristics.

• Implement such algorithm into TUnit
framework.

• Additionally allow the user to specify
domain specific similarity features to
enhance the pruning.

44

