
McGill University

School of Computer Science

Ph.D. Candidate in the Modelling, Simulation and Design Lab

MSDL’08

De-/Re-constructing Model
Transformation Languages

Eugene Syriani

MSDL’08

OVERVIEW

 Context

 De-Constructing Transformation Languages

— Collection of MT primitives

 Re-Constructing Transformation Languages

— FUJABA

— More esoteric features

 MoTif-Core: a re-construction example

— MoTif

— GReAT

 Conclusion

2

MSDL’08

THE BIG PICTURE

MSDL’08

IN THE CONTEXT

• Many different model transfromation languages (MTLs)

– Features [1]: atomicity, sequencing, branching, looping, non-determinism,
recursion, parallelism, back-tracking, hierarchy, time

– Transformation rule: matching + rewriting + validation

• Hard to

– Compare expressiveness

– Provide framework for interoperability

• Express MTLs in terms of primitive building blocks

– De-Construction: small set of most primitive constructs

– Re-Construction: discover new MTLs + interoperation + optimization

4

[1] Syriani, E. and Vangheluwe, H. (2009) Matters of model transformation. Technical Report SOCS-TR-2009.2. McGill
University, School of Computer Science.

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

5

T-Core Module
• 8 primitives

• Composition operator

• 3 types of messages

• Exchange of messages
through methods

• 3 output states:

– Success

– Fail

– Exception

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Matcher

6

1. Find all matches (parameter)

2. Store result in packet

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Rewriter

7

1. Check validity of packet

2. Apply transformation

3. Propgate changes in all match sets

4. Consume match

Exception possible!

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Iterator

8

1. Check if match set is not empty

2. Randomly choose a match

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Rollbacker

9

1. Push packet onto stack

1. Match set not empty:
there are matches left (pass on)

2. No match set:
back-track to previous state

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Resolver

10

1. Conservative check for potential
conflict between different
matches in match sets (parameter)

2. Customizable resolution function

Exception possible!

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Selector

11

1. successIn: add to success set

2.failIn: add to fail set

3. Choose randomly first from
success then from fail

Exception possible!

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES
Synchronizer

12

1. successIn: add to success set

2. failIn: add to fail set

3. Merge only if all threads
succeeded

4. Customizable merge function

Exception possible!

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Composer

13

1. Meaningfully composes its sub-primitives

2. User-defined composition

MSDL’08

DE-CONSTRUCTING TRANSFORMATION
LANGUAGES

Motivating T-Core

14

• De-construct up to what level?

• What to include, what to exclude?

– Pre/PostConditionPattern: rules, bi-directional, functions

– Separation match/rewrite: queries, nested transformaitons

– Packet: sufficient info to be processed by each primitive,
designed for concurrent transformations

– Composition: scaling for large model transformations

– T-Core module: open for more building blocks, extendable

MSDL’08

RE-CONSTRUCTING TRANSFORMATION
LANGUAGES

15

MSDL’08

RE-CONSTRUCTING TRANSFORMATION
LANGUAGES

FUJABA for-all Pattern [2]

16

[2] Fischer, T., et. al., (2000) Story diagrams: A new graph rewrite language based on the UML and Java. In Ehrig, H., et al.,
(eds.), Theory and Application of Graph Transformations, LNCS, 1764, pp. 296–309. Springer-Verlag.

MSDL’08

RE-CONSTRUCTING TRANSFORMATION
LANGUAGES

FUJABA for-all Pattern

17

MSDL’08

RE-CONSTRUCTING TRANSFORMATION
LANGUAGES

FUJABA for-all Pattern

18

MSDL’08

RE-CONSTRUCTING TRANSFORMATION
LANGUAGES

“Repot all flowering geraniums whose pots have cracked”

Amalgamation rules: Repotting the geraniums [3]

19

[3] Rensink, A. and Kuperus, J.-H. (2009) Repotting the geraniums: On nested graph transformation rules. In Margaria, T.,
Padberg, J., and Taentzer, G. (eds.), GT-VMT’09, EASST.

MSDL’08

MOTIF-CORE = DEVS + T-CORE [4]

20[4] Zeigler, B. P. (1984) Multifacetted Modelling and Discrete Event Simulation. Academic Press.

MSDL’08

MOTIF-CORE: TIMED MTLS

• Time

• Exceptions

MoTif AtomicRule [5]

21

[5] Syriani, E. and Vangheluwe, H. (2009) Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press,
Boca Raton (USA).

MSDL’08

MOTIF-CORE: TIMED MTLS

• Asynchrony

• Parallelism

GReAT Test/Case block [6]

22

[6] Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., and Vizhanyo, A. (2006) The design of a language for model
transformations. SoSym, 5, 261–288.

MSDL’08

MOTIF-CORE: TIMED MTLS

More Readable: Repotting the geraniums

23

MSDL’08

CONCLUSION

• Collection of MT primtives: T-Core

• Re-construction of existing MTLs (comparable)

• New-Construction of novel MTLs: MoTif-Core

• Future Work

– Efficiently implement these primitives

– Compare MoTif-Core with QVT-Core

24

MSDL’08

Let’s discuss

25

