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Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.
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SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language
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Future Work

Extend to other model transformation languages

Promote “contract-based design” of model transformations, with continuous
verification

Tooling: Integrate transformation verification into the ModelVerse
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Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases

Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”
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Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”
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Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?
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