
Verification Using Contracts

Bentley James Oakes

University of Antwerp/Flanders Make

October 22, 2018



Overview

1 Model Transformation Verif.

2 Traceability Reqs. Verif.

3 Simulation Trace Verif.

Oakes Verification 2 / 12



Outline

1 Model Transformation Verif.

2 Traceability Reqs. Verif.

3 Simulation Trace Verif.

Oakes Verification 3 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes Verification 4 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



SyVOLT

Features:

Eclipse/MPS visual editors

HOT from ATL

Verif. possible in seconds

Limitations:

Reduced expressiveness

Structural contracts only

Limited contract language

Oakes Verification 5 / 12



Future Work

Extend to other model transformation languages

Promote “contract-based design” of model transformations, with continuous
verification

Tooling: Integrate transformation verification into the ModelVerse

Oakes Verification 6 / 12



Future Work

Extend to other model transformation languages

Promote “contract-based design” of model transformations, with continuous
verification

Tooling: Integrate transformation verification into the ModelVerse

Oakes Verification 6 / 12



Future Work

Extend to other model transformation languages

Promote “contract-based design” of model transformations, with continuous
verification

Tooling: Integrate transformation verification into the ModelVerse

Oakes Verification 6 / 12



Future Work

Extend to other model transformation languages

Promote “contract-based design” of model transformations, with continuous
verification

Tooling: Integrate transformation verification into the ModelVerse

Oakes Verification 6 / 12



Outline

1 Model Transformation Verif.

2 Traceability Reqs. Verif.

3 Simulation Trace Verif.

Oakes Verification 7 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases

Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases

Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases

Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Motivation

CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
Part of certification - ISO 26262

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

Oakes Verification 8 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability

HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?

DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Req. Mgmt.

EXAMPLE: “A requirement changed, are the related safety goals still valid?”

EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL/tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OCL for structural constraints?
DSL with semantics for editing model state?

“When req. is edited, mark connected safety goals as needing manual check”

Oakes Verification 9 / 12



Outline

1 Model Transformation Verif.

2 Traceability Reqs. Verif.

3 Simulation Trace Verif.

Oakes Verification 10 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.

GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Motivation

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

Oakes Verification 11 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:

IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→

Signal Temporal Logic (STL):
� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:

BREACH? Custom-made?
Reporting:

Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:

Robustness? Visualization?

Oakes Verification 12 / 12



Process

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

→
Signal Temporal Logic (STL):

� [0,5)(accel >= 3 && accel <= 4)

Tool for checking:
BREACH? Custom-made?

Reporting:
Robustness? Visualization?

Oakes Verification 12 / 12


	Model Transformation Verif.
	Traceability Reqs. Verif.
	Simulation Trace Verif.

