
Verifying SysML/UML
(Behavioural) Diagrams
Lucas Lima
MSDL Summer workshop
01 September 2023

(Concurrent) System complexity concerns

Motivation

IN(SEMI)FORMAL MODELS

• Easy to learn and to
create models

• Facilitates
communication

• Property verification is
limited and (usually)
human-dependant

FORMAL MODELS

• Difficult to learn and
manipulate

• Properties can be
soundly verified

• Usually, supported by
tools

3

Formal Methods

Mathematical
approaches to
software and system
development which
support the rigorous
specification, design
and verification of
computer systems.

http://www.formal-methods.net/intro/

http://www.formal-methods.net/intro/

Model checking !!!

Model checker
tool

Property is valid!

Sorry, here is a
counter-example that
shows your property
is not true!

Property to be verified!

Program model

5

Proposal

Formal
Reasoning

UML/SysML

Formal
Semantic
Domain

• CSP – Communicating Sequential Process
– Initially proposed by Tony Hoare in

1978
– It has been applied in industry as a tool

for specifying and verifying the
concurrent aspects of systems

– Influenced the design several
languages, like occam, Limbo,
RaftLib, Erlang, Go, Crystal,
and Clojure's core.async

– CSPM is its machine-readable dialect
– The Failures/Divergence Refinement (FDR)

checker is the most well-known CSP tool

https://en.wikipedia.org/wiki/Formal_specification

Why CSP?

Expressiveness
of the language

Compositional
Operators

Mature model
checker (FDR)

Established
refinement

theory

CSP at a glance

NAT = {0..MAX}
MAX = 5
channel put, get: NAT

Buffer(b) = (length(b) < 5 & put?x -> Buffer(b^<x>))
 []
 (length(b) > 0 & get!(head(b)) -> Buffer(tail(b)))

Producer = put!1 -> Producer
Consumer = get?x -> Consumer
System = (Buffer(<>) [|{|put,get|}|] (Producer ||| Consumer))

Interleaving

Synchronized Parallelism

P
R
O
C
E
S
S
E
S

Channel declaration
Types and Values

External
Choice

Verification - FDR

• FDR – Failures-Divergence Refinement
• User interface

– animation
– type checking
– verification of properties like

deadlock, divergence,
determinism and refinement

• API
– Java, Python and C++
– Only works if executed from the

FDR installation folder

Verification - FDR

CSPm

LTS

compile
Checks
property

valid

Not valid
(counterexample)

<e1,e2,…,en>

Verification - FDR

• Properties are checked using assertions
• Given that MODEL is the CSP process translated from an Activity
• Deadlock

– assert MODEL :[deadlock free]

• Determinism
– assert MODEL :[deterministic]

• In case a deadlock or nondeterminism is found, FDR returns a
trace of events that leads to the issue

Checking Sequence Diagram
Refinement

Application 1

https://link.springer.com/chapter/10.1007/978-3-319-49815-7_14

Concern

• Stepwise design

Abstract

ModelLess
Abstract

Model
Concrete

Model
Refine *

Refinement Notions

• Strict Increment Refinement - Example
Abstract Model Refined Model

Refinement Notions

• Weak Increment Refinement - Example
Abstract Model Refined Model

Overview on the CSP sequence diagram semantics

Overview on the CSP sequence diagram semantics

T T T T

|| || ||

Messages Buffer

||

beginInteraction →

endInteraction → SKIP

Tool Support

UML /
SysML

CSP

JAVA

FDR

Translation

VerificationTraceability

1

23

Tool Support

20

• Plug-in of the Astah
Modeling Tool

• It requires the FDR3 tool

Example

• Strict Increment Refinement
Abstract Model Refined Model

Example

• Strict Increment Refinement
Abstract Model Refined Model

Example

• Weak Increment Refinement
Abstract Model Refined Model

Example

• Weak Increment Refinement
Abstract Model Refined Model

Verifying Deadlock and
Nondeterminism in Activity Diagrams

Application 2

https://www.sciencedirect.com/science/article/abs/pii/S0
167642320301064

https://ieeexplore.ieee.org/document/8904590

Current concerns

Deadlock

the system can’t make any
progress, because each
process is waiting for
communication with others.

It can happen for instance due
to competition for resources

remains one of the most
common and feared issues in
concurrent systems.

Current concerns

Nondeterminismeven for the same input, the
system can exhibit different
behaviors on different runs

Unpredictability

Cannot be tackled with standard
verification approaches like testing

Overview on the CSP activity diagram semantics

Overview on the CSP activity diagram semantics

Main Process

Internal Process

Action
Nodes

Token
ManagerControl

Nodes
Object
Nodes

Start
Activity

End
Activity

;

;

Nodes

CSP process representing the whole
activityCSP process representing the internal
structure

Composes the processes of all nodes
in parallel synchronizing on the events

related to their edges
CSP process that indicates the

termination of the activity. It may
provide output parameters.

CSP process responsible for controlling
the termination of the activity

CSP process that fires the execution of
the activity. It may receive input

parameters.

Traceability

• Mechanism to show the results in terms of UML/SysML
• Avoid any contact with formalism (CSP)
• Events need to allow traceability

– Unique Identifiers
– Table describing mappings

• When a counterexample is returned be FDR:
– Create a copy of the activity
– Highlight the path to the problem traversing the trace given by

the counterexample

Traceability

Activity Property Verifier (APV) Architecture

APV
Architecture

• - Adapters to support
different
environments/tools

• - Common Activity
Interface isolate the formal
semantics (CSP Parser)

• - Traceability module
maps counterexample
trace to activity identifiers

• - FDR Bridge manages
communication with FDR

Tool
demonstration

OpenMBEE Module Overview

Activity identifier +
MMS API URL +
Credentials

APV
1. Generate
authenticatio
n token

2. Recover AD
elements (several
API calls)

3.
Assemble
AD adapter

4. Translate
AD to CSP

5. Check
Property in
FDR

6. Trace the results back

Verifying Deadlock and
Nondeterminism in State Machines

Application 3

Overview on the CSP state machine diagram semantics

Overview on the CSP state machine diagram semantics

Overview on the CSP state machine diagram semantics

Example

When a counterexample is detected

When a counterexample is detected

When a counterexample is detected

Visual Specification of Properties
for Robotic Designs

Application 4

https://link.springer.com/chapter/10.1007/978-3-030-92137-8_3

RoboStar Project

RoboTool
45

RoboStar*

Verifying properties using RoboChart

46

Our approach

Activity Nodes

Abstraction patterns

DSL to specify properties based on UML activity diagrams
Events and operations

48…with a formal semantics defined in CSP

Solar Panel Vacuum Cleaner

49

Counterexample as Sequence Diagram

FDR is called in the background

Property [T= RoboChart

The counterexample is presented as a
sequence diagram

50

Safe and constructive design with
UML components

Application 5

https://link.springer.com/chapter/10.1007/978-3-030-03044-5_15

§ Component Based Software Development (CBSD):
§ a widely disseminated paradigm
§ focus on component design and integration
§ modelling and design in UML or other graphical notations

§ Existing approaches to verification:
§ typically uses formal notation
§ no traceability to the modelling notation
§ perform a posteriori verification: often costly and infeasible

Ctr = <B,R,I,C>

B : Behaviour (CSP Process)
R: Channel <-> Interface (relationship)

I: Set of interfaces (datatype)
C: Communication channels (channels)

{ picksup_I,picksup_O,
putsdown_I,putsdown_O }

{ picksup_I,picksup_O,
putsdown_I,putsdown_O }

https://repositorio.ufpe.br/bitstream/123456789/2073/1/
arquivo6881_1.pdf

54

56

UML component Model Formal Semantics

Well-formedness conditions Verifications

Deadlock Analysis

Traceability

Conclusions

Verifying SysML/UML
(Behavioural) Diagrams
Lucas Lima
MSDL Summer workshop
01 September 2023

