Application of Systems Engineering to Simulation

Notes on simulation needs and simulation validation

- Who we are
- 2. Scope
- **3.** Introduction to specification
- **4.** Introduction to complex simulations
- 5. Simulation needs and validation
- 6. Applications
- 7. Conclusion

IRT SystemX

Paris-Saclay • Lyon • Singapour

100 **Economic partners** of which 1/3 are large groups and 2/3 are SMEs

Leads market-driven and applied research projects for the digital transformation of industry, services and territories:

Expertise: analysis, modeling, 1 simulation and decision management

Own skills 2

Founding

members

3 Own assets: software, cyber-physical and tool-based platforms

Defense and security

1111

Environment and sustainable development

Systematic

Simulation at SystemX

Examples of projects in simulation

- **Decarbonized City**: Impact evaluation of city projects (e.g. installation of a district heating network) thanks to data management and digital twins
- JNI: Development, instantiation and deployment of digital twins for complex industrial systems
- HSA: Simulation and machine learning hybrid models and benchmarks
- openPISCO: Open-source topological optimization platform driven by the level set method
- AMC: Complex simulation architecture based on MBSE (needs, reuse, traceability)
- **AFS**: Exchange of simulation models with sufficient fidelity

Simulation at SystemX

AFS project

- Develop a methodology to improve the collaboration between a system manufacturer and a supplier in terms of simulation
- Integrate this collaboration in new simulation architecture tools for better agility
- Develop a methodology to manage simulation model fidelity and guarantee simulation results credibility
- Develop new AI-based approaches to improve physical models fidelity
- **Standardize** information exchanges in simulation-based development processes

- **1.** Who we are
- 2. Scope
- **3.** Introduction to specification
- **4.** Introduction to complex simulations
- 5. Simulation needs and validation
- 6. Applications
- 7. Conclusion

Simulation-based design

V-shaped processes

How much gas should it consume? How much should it cost? What are its components ?

. . .

. . .

Simulation needs

Necessary to get a simulation that meets the needs

Process artefacts

Traceability for:

 High data quality (consistency, clarity, ...) Easy data processing (verification, recommendation, ...)

- 1. Who we are
- 2. Scope
- **3.** Introduction to specification
 - 4. Introduction to complex simulations
 - 5. Simulation needs and validation
 - 6. Applications
 - 7. Conclusion

Requirements

Objective (ideally): Keep a traceability of every design choice and every test

Stakeholder needs are sometimes similar to system requirements

- Ex. 1: The customer wants a blue car
- Ex. 2: The marketing department says that the car range must be higher than what the competitor offers

Stakeholder needs

Involve everyone...

Users

Programmers

Field workers

Regulators

Political associations

• ... and the whole lifecycle

Concept stage	Development stage	Production stage	Utilization stage	Retirement stage
			Support stage	

References

- ISO/IEC/IEEE 15288:2015

Requirements quality

Good requirements

- 1. Necessary
- 4. Complete
- 7. Verifiable

- 2. Implementation independant
- 5. Singular
- 8. Conforming

- 3. Unambiguous
- 6. Achievable

- Good set of requirements
 - 1. Complete2. Consistent
 - 3. Feasible/affordable 4. Bounded

References

- INCOSE Systems Engineering Handbook (4th ed.)
- ISO/IEC/IEEE 29148:2018
- INCOSE Guide for writing requirements

Quality requirements

• « Ilities »,

« Quality requirements »,

« Non-Functional requirements »

ISO/IEC 25010:2011 System and software quality models

Requirements nature

- **1.** Who we are
- 2. Scope
- **3.** Introduction to specification
- 4. Introduction to complex simulations
 - 5. Simulation needs and validation
 - 6. Applications
 - 7. Conclusion

Specification execution in software engineering

Model-based testing

- Execute and test the model
- Requires a formal specification

Santen et al. Executing UML State Machines. 2006.

after(2 weeks) WAIT-2 Send ques-Register) WAIT-1 tionnaire ► Archive \rightarrow [not processing required] -> Evaluate) WAIT-4 [else]¥ [in(WAIT-2)] [ok] Process Check Processing complaint [else] [else] WAIT-3 Eshuis et al. An Execution Algorithm for UML Activity Graphs. 2001.

[questionnaire

received

Example of runnable UML activity graph

Process

questionnaire

18

Example of runnable UML state machine

 A simulation is always fit for specific needs: It's never good at everything

https://www.sciencedirect.com/science/article/abs/pii/S1361920917309744

- A simulation is always fit for specific needs: It's never good at everything
- A simulation has its own requirements

Execution time

- A simulation is always fit for specific needs: It's never good at everything
- A simulation has its own requirements
- A simulation has its own topology

Blocks to set a temperature

- A simulation is always fit for specific needs: It's never good at everything
- A simulation has its own requirements
- A simulation has its own topology
- A simulation has its own architecture

- A simulation is always fit for specific needs: It's never good at everything
- A simulation has its own requirements
- A simulation has its own topology
- A simulation has its own architecture
- A simulation often has its own development team, with specific skills

- A simulation is always fit for specific needs: It's never good at everything
- A simulation has its own requirements
- A simulation has its own topology
- A simulation has its own architecture
- A simulation often has its own development team, with specific skills
- A simulation has its own life cycle

Balci. Validation, verification, and testing techniques throughout the life cycle of a simulation study. 1994.

- **1.** Who we are
- 2. Scope
- **3.** Introduction to specification
- 4. Introduction to complex simulations
- **5.** Simulation needs and validation
- 6. Applications
- 7. Conclusion

Example of simulation

Control parameters :

- Range of action
- Deceleration in anticipation of a color change

Sensor subject to an uncertainty :

Detection range

Question: What are the best parameters and sensor to minimize both the energy consumption and the sensor cost?

Simulation needs

Sohier, H, Lamothe, P, Guermazi, S, Yagoubi, M, Menegazzi, P, Maddaloni, A. **Improving simulation specification with MBSE for better simulation validation and reuse.** *Systems Engineering*. 2021; 1–14.

Available at https://doi.org/10.1002/sys.21594

WILEY

- Overengineering = Type I error
 - Invalid results = Type II error
 - $\beta = P$ (believe $H_0 \mid H_1$ is true)
 - What probability eta of type II error can you accept ?
 - Linked to the criticity of the simulation (see V&V 40)
 - $_{\circ}$ $\,$ Linked to the decision you need the simulation for
 - · Can the decision have serious consequences ?
 - Will the decision only be based on this simulation ?
 - Qualitative approach :
 "improbable type II error", "possible type II error"...
 - Reducing the risk of type II error statistically increases the risk of type I error
 - The risk of type II error is not easy to estimate,

- Ideally, simulation should not provide a simple estimator \hat{y} , but an exact probability density function p(y)
- The criticity of the simulation then simply constrains $p(y \ge y_{\lim})$
- p(y) = Holy Grail of simulation

- p(y) is a function of neglected physics, solver approximations, code errors, ...
- p(y) is not a simple propagation of input uncertainties

- The comparison of simulation and experimentation results is not an end in itself (how close should the results be?)
- Be careful to:
 - What simulation uncertainties cover
 - How accurate the experimentation results are
 - How many experimentation results are available
 - How to deal with time dependency

- Ranking solutions also requires a discrimination threshold
- If the difference between Solution A and solution C is greater than the discrimination threshold, A can be considered as better than C
- Probability β of type II error (A is actually not better)
- The simulation may be specific to solutions A, B and C (and not able to rank other solutions)

Verification and validation of the simulation

- Verification = Did I build the thing right ?
- Validation = Did I build the right thing ?
- Covers various aspects: Correct representation of the system (conceptual model validation) ? Accurate enough (operational validation) ? No programming errors (implementation verification) ?...
- Often not well distinguished in simulation

Verification and validation of the simulation

Various techniques: •

Process oriented considerations •

> **Credibility levels** 2

1

3

4

	va v reenniques ior :	simulation woders				
Informal	Static	Dynamic	Formal			
1	L	1	L			
Audit Desk Checking Documentation Checking Face Validation	Cause-Effect Graphing Control Analysis	Acceptance Testing Alpha Testing	Induction Inductive Assertions	Credibility elements		
	Calling Structure Analysis Concurrent Process Analysis Control Flow Analysis State Transition Analysis Data Analysis Data Dependency Analysis Data Dependency Analysis	e Analysis Assertion Checking I ess Analysis Beta Testing I alaysis Bottom-Up Testing I Analysis Comparison Testing I <i>Compliance Testing</i> I y Analysis Authorization Testing I rsis Performance Testing lysis Security Testing	Lambda Calculus Logical Deduction Predicate Calculus Predicate Transformation Proof of Correctness	Simulation Management	Data	
Reviews Turing Test					Processes	
Walkthroughs					Competences	
	Fault/Failure Analysis				Methods & Tools	
	Interface Analysis Standards Testing Model Interface Analysis Debugging User Interface Analysis <i>Execution Testing</i> Semantic Analysis Execution Monitoring Structural Analysis Execution Profiling Symbolic Evaluation Execution Tracing			Model fidelity		
		Execution Testing Execution Monitoring		Modeling & VVUQ	Solution verification	
		Execution Profiling Execution Tracing			Code verification	
	Syntax Analysis Traceability Assessment	Fault/Failure Insertion Testing Field Testing			Validation	
	· · · · · · · · · · · · · · · · · · ·	Functional (Black-Box)Testing Graphical Comparisons			UQ/SA	
		Interface Testing Data Interface Testing Model Interface Testing				

V&V Techniques for Simulation Models

Balci. Verification, Validation and Accreditation of Simulation Models. 1997.

•••

Building simulation credibility in an industrial context (2022 NAFEMS training by Imbert and Pasquet)

Requirement

Verification and validation of the simulation

- To take into account:
 - Simulation V&V is difficult
 - It is often done without clear process and with limited budget
 - Simulation V&V is often less progressive than system V&V (where the upward phase of the V-model is more carefully respected)
 - The simple comparison of simulation and experimental results if often difficult

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations

Major input parameter / Load level

Building simulation credibility in an industrial context (2022 NAFEMS training by Imbert and Pasquet)

- **1.** Who we are
- 2. Scope
- **3.** Introduction to specification
- **4.** Introduction to complex simulations
- 5. Simulation needs and validation
- **6.** Applications
 - 7. Conclusion

Tool for simulation specification

38

Tool for simulation reuse

Repository of past simulations

Sohier, H., Petitdemange, L., & Lamothe, P. Identification of Systems With Similar Chains of Components for Simulation Reuse. 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)

Tool for simulation reuse

Characterization of simulation models

Model Identity Card (MIC)

- Model Identity Card (MIC)
- Metadata for the characterization of simulation models
- Can be used for specification, search, integration, ...
- MIC-Core: Standardization lead by IRT SystemX, Prostep and ATLAS
 - ID, name and description
 - Modelled entity and model purpose
 - Modelling choices and model limitations
 - Software and hardware requirements
 - Confidentiality
 - Verification and validation
 - ...
- Let us know if you are interested!

Jully 2023 : Common publication of MIC-Core, A core set of metadata to characterize simulation models

https://mic-core.github.io/MIC-Core/main

To augment simulation engineering with interoperable tools To be used for simulation specification/reuse/integration/exchange/..

AFS & AMC projects (Renault, Stellantis, ESI, Plastic Omnium, ...)

prostep IVIP

SmartSE project (Bosch, Dassault Systèmes, dSPACE, Siemens, ...)

STELLANTIS

Methods and processes

Credible decision process from Prostep SmartSE

Methods and processes

- MIL-STD-3022 Documentation of Verification, Validation, and Accreditation (VV&A) for models and simulations
 - Templates for documentation
 - Some paragraphs regarding the simulation needs:
 - "Problem statement"
 - "M&S requirements and acceptability criteria"
 - "Basis of comparison."
 - Standard vocabulary
- NASA-STD-7009 Standard for Models and Simulations
- PCMM (Predictive Capability Maturity Model)
- V V 10 (Standard for Verification and Validation in Computational Solid Mechanics) by ASME
- V V 40 (Assessing Credibility of Computational Modeling through Verification and Validation) by ASME
- Simulation Verification and Validation for Managers by NAFEMS
- Verification and Validation in Scientific Computing by Oberkampf

Methods and processes

Simulation is a (digital) product in its own right

- **1.** Who we are
- 2. Scope
- **3.** Introduction to specification
- **4.** Introduction to complex simulations
- 5. Simulation needs and validation
- 6. Applications
- **7.** Conclusion

Conclusion

- A simulation is a digital product in its own right
- Simulation development should start with clear needs
 - Improves validation
 - Improves reuse
- Traceability improves data consistency and data processing
- Simulation should be subject to quality and risk management
- Challenges
 - How to ensure traceability, in particular during the whole simulation development?
 - What are the new software functions required by simulation engineering?
 - How to further improve the management of digital twins and AI-based simulations ?
- Towards a better standardization ?

THANKS FOR YOUR ATTENTION

henri.sohier@irt-systemx.fr

