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Abstract

We are interested in mapping Ordinary Differential Equations (ODEs) models onto a
behaviourally equivalent representation in the Discrete EVent system Specification (DEVS)
formalism. The mapping from continuous-time models onto discrete-event models is based
on quantization, an approach dual to the common discretization methods. As compared to
discretization-based methods, the alternative approximation technique offers increased par-
allelization possibilities, as well as an easier approach to simulating multi-formalism models
(particularly, hybrid models) through the use of a single common formalism. Our goals include
the design of approximation methods, their analysis, and the implementation and optimiza-
tion of a modelling and simulation package. In this proposal we present an overview of the
relevant material, as well as a detailed exposition of the projected work. Some early results
are also discussed, which confirm the usefulness of the idea. Our work will contribute to both
practical and theoretical aspects of modelling and simulation.

1 Introduction

The Discrete EVent system Specification (DEVS) formalism was first introduced by Zeigler [10,
11] in 1976, to provide a rigourous common basis for discrete-event modelling and simulation.
By this we mean that it is possible to express in the DEVS formalism, popular discrete-event
formalisms such as event-scheduling, activity-scanning and process-interaction. The main merit
of the formalism is that a DEVS simulator is highly suitable as a Virtual Machine for the effective,
and possibly parallel simulation of discrete-event models.

The class of formalisms denoted as discrete-event is characterized by a continuous time base
where only a finite number of events can occur during a finite time-span. This contrasts with
Discrete Time System Specification (DTSS) formalisms where the time base is isomorphic to

�
,

and with Differential Equation System Specification (DESS, or continuous-time) formalisms in
which the state of the system may change continuously over time.
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Figure 1: Formalism Transformation Graph

The Formalism Transformation Graph (FTG) [8, 9] shown in Figure 1, depicts behaviour-
conserving transformations between some important formalisms. The graph distinguishes between
continuous-time formalisms on the left-hand side, and discrete formalisms (both discrete-time and
discrete-event) on the right-hand side. Although the graph suggests that formalisms can be mapped
onto a common formalism on their respective sides, very few transformations allow crossing the
middle-line: this illustrates why hybrid systems (those that bring together both discrete and con-
tinuous systems) are difficult to solve.

The traditional approach to solve continuous-time problems is based on discretization , which
approximates a continuous-time model by a discrete-time system (difference equations). A par-
titioning of the time-axis, as is the case in discretization, is however hard to harmonize with a
partitioning of the state space, as is performed in discrete-event systems (see [5]).

In this work we propose to map continuous-time formalisms (ODEs and semi-explicit DAEs)
onto the DEVS formalism (this corresponds to the arrow going from “scheduling-hybrid-DAE”
to “DEVS” on the FTG) through quantization. This mapping will be an approximate morphism
and will thus require a detailed analysis. In doing this, our prime goal is to use a single “base”
formalism for all simulations. To be usable, this formalism must be both simple (which is not the
case for the DEV&DESS formalism [6]), and have performance comparable to those of traditional
approaches.

As mentionned above, succeeding in our goal would result in a simpler, more elegant way
of simulating hybrid systems , or more generally, multi-formalism systems. Another consequence
would be the increased possibilities for distributed (parallel) implementations:

The closure property (under composition, or coupling) of systems such as DEVS offers the
possibility to describe a model as a hierarchical composition of simpler sub-components. Apart
from the obvious advantages associated with modularity (conceptual level, component reusabil-
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ity), a significant gain in the efficiency of simulating large, complex dynamic systems can also
be achieved by using multi-rate integration (employing different integration frame rates for the
simulation of fast and slow sub-components), either on a single or on multiple processors (par-
allelization). Although some continuous-time formalisms (e.g., causal-block diagram simulation
tools) allow model hierarchization, multi-rate integration mixes poorly with traditional approaches
where discretization along the time-axis forces the simulator to work explicitly with the global
time base. This, in contrast to discrete-event formalisms where the simulator is concerned with lo-
cal state space changes, and the time base is dealt with implicitly. Discrete event concepts are thus
better suited for parallel � distributed simulation, and much effort has been devoted to the develop-
ment of conservative (e.g., Chandy-Misra approach), optimistic (e.g., Time-Warp) and real-time
(e.g., DARPA’s Distributed Interactive Simulation) parallel discrete event simulation techniques.
The relevance of DEVS in that context is illustrated by the concept of the DEVS bus which con-
cerns the use of DEVS models as “wrappers” to enable a variety of models to inter operate in
a networked simulation. The DEVS bus has been implemented on top of the DoD’s High Level
Architecture (HLA) standard, itself based on the Run-Time Infrastructure (RTI) protocol.

This report is structured as follows: The next section gives a very brief overview of numeri-
cal analysis concepts that will be required to assess the validity of the quantization schemes. In
section 3 we describe the classic DEVS as well as the P-DEVS formalisms, and section 4 intro-
duces the concept of quantization, by which an ODE can be mapped onto a DEVS model. Finally,
section 5 presents in more detail the objectives and the specific questions we would like to answer.

2 Continuous-Time Formalisms

Ordinary Differential Equations (ODEs) and Differential Algebraic Equations (DAEs) are ubiq-
uitous in all fields of science. Continuous problems can be classified into two broad categories:
Initial Value Problems (IVPs) and Boundary Value Problems (BVPs). We will only be interested
in the former here (though some BVPs can be solved interactively by using shooting methods over
IVPs), and will further assume that we only have one independent variable t (for all practical pur-
poses, time): Numerical methods such as finite elements are used for Partial Differential Equations
(PDEs), which are not subject to that last constraint. We will further only be interested in semi-
explicit DAEs , which can be transformed into ODEs with constraints, and pure ODEs; this is not
that a severe restriction, as many continuous-time models of interest fall under the semi-explicit
DAE scheme.

A succinct overview of the numerical aspects of discretization is presented below. This material
will be crucial in establishing the validity of quantization approaches, introduced in section 4, as
an alternative to traditional discretization.

2.1 Discretization of ODEs and DAEs

The most general form of an initial value ODE is

y ��� f � y � t �
y � t0 ��� y0 �

where boldface denotes a vector, and y0 is the given initial condition. We say that the system is
autonomous if the function f does not depend on t.

We are interested in finding the solution y � t � . Such a solution is guaranteed to exist and to be
unique provided that f � y � t �

1. is continuous in the infinite strip D �
	 t0 � t � t f �
� y � � ∞ � ,
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2. and is, more specifically, Lipschitz continuous in the dependent variable y over the same
region D , i.e., � a positive constant K such that ��� y � t ����� ỹ � t ��� D ,

� f � y � t ��� f � ỹ � t ��� � K � y � ỹ ���
Actually, these (sufficient) conditions also guarantee that the solution depends Lipschitz continu-
ously on the initial condition. i.e., if y � t � is the solution to the original problem and now ỹ � t � also
satisfies the ODE but with a different initial condition ỹ � t0 � , then � a positive constant L such that

� y � t ��� ỹ � t ��� � L � y � t0 ��� ỹ � t0 �����
This condition together with the existence and uniqueness of a solution defines a well-posed prob-
lem [1].

An approximate solution to an ODE is typically obtained by iterating a set of difference equa-
tions that “approximate” the original system. For this we need to discretize the independent vari-
able t. Let 	 ti � i � 0 � 1 ������� n � be a mesh over the interval of integration, t0 � t1 � �����!� tn " 1 � tn � t f ;
then hi � ti � ti " 1 is the i th step-size. We assume for simplicity a uniform mesh, h � t f " t0

n . The re-
cursive application of the difference equation defines a mesh 	 yi � , with each yi an approximation
of the exact solution y � ti � .

The simplest difference approximation scheme is the so-called Euler-Cauchy (or polygonal )
method,

yi # 1 � yi $ h f � yi � ti ���
which can be obtained by truncating the Taylor expansion of y � t � after the first-order term, or by
approximating the derivative by a forward difference quotient. This is an explicit method, in that
the new value yi # 1 is readily obtained from the old value yi.

Compared to ODE theory, DAE theory is more recent, and offers a much more complex chal-
lenge [1]: no general existence and uniqueness condition can be stated for this class of problems,
and it follows that very few quantitative results can be deduced.

The most general form of a DAE is

F � t � y � y �%�&� 0 �
We will be interested here only in the simpler special case of semi-explicit DAEs, which can be
reformulated as ODEs with constraints:

x � � f � t � x � z �
0 � g � t � x � z ���

where we distinguish between differential variables x and algebraic variables z. We can in princi-
ple preprocess the DAE to solve for z in the latter set of equations. The first step of the preprocess-
ing consists in symbolic reduction. Dependency cycles are then explored with an “algebraic loop”
detection algorithm such as Tarjan’s. If loops are present, we can try to solve the implicit set of
equations (by numeric or symbolic manipulation, or a nonlinear residual solver). When no loops
are present, the equations are sorted and then solved explicitly. Substituting the solutions into the
first equation yields an ODE in x (although no uniqueness is guaranteed).
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2.2 Numerical Analysis

Numerical analysis is concerned with the study of convergence and stability, and a suitable choice
of the step-size h. For completeness we also mention sensitivity analysis, which studies the effects
of introducing perturbations (due to roundoffs or measurement errors) in the original ODE. For
a difference approximation to be usable for a class of functions f � y � t � , it is necessary that any
function in this class satisfies a number of requirements [3]:

The first requirement concerns the existence and uniqueness of a solution. This is readily
satisfied by explicit schemes, and can usually be ascertained for implicit schemes.

Secondly, we expect that for sufficiently small h, 	 yi � should be close in some sense to ' y � ti ��( .
Since the scheme we use is an approximation of the original problem, we expect it to introduce an
error upon each iteration: assuming infinite precision arithmetic, we call this approximation error
the local truncation error τi (from the truncation of the Taylor expansion). If we can prove for a
given scheme that

lim
h ) 0

τi � 0 �
then the method is said to be consistent (or accurate). However, we are interested in the accumu-
lation of these errors: we write yi � y � ti � $ ei, where ei is the global truncation error (equivalent to
summing up the τi’s under the assumption that e0 � 0). If we can show for a given system that

lim
h ) 0

ei � 0 �
then the method is said to be convergent. For instance, we can find for the Euler-Cauchy method
that � τi ��� O � h2 � (consistent of order 2), and � ei �*� O � h � (convergent of order 1).

The third requirement is that the solution should be “effectively computable”. This concerns,
on the one hand, the computational efficiency of the implemented method; on the other, since we
cannot assume infinite precision arithmetic in practice, we want to estimate the growth of roundoff
errors in the solution. This is related to stability of the method, which is actually a much more gen-
eral concept: a method is said to be unstable if, during the solution procedure, the result becomes
unbounded. This phenomenon arises when the difference equations themselves tend to amplify er-
rors to the point that they obliterate the solution itself. One should not confuse the “stability” of the
numerical method we discuss here with the “stability” of the original ODE problem, which is con-
cerned with the analysis of the attractors. However, both concepts are related since the numerical
solution is expected to behave similarly to the true solution.

A method is said to be stable (or 0-stable) if the corresponding difference equation is stable.
This stability is easy to assess when the difference equation is linear in � y i � yi # 1 ������� yi # k � , by study-
ing the eigenvalues associated with its characteristic equation. The convergence theorem states that
if a method is both stable and consistent (of order p), then it is convergent (of order p).

The concepts introduced above concern the limit behaviour of a method when h + 0 and i + ∞.
However we are usually interested in finding an expression for the upper bound to the total error
(truncations and roundoffs) in function of the stepsize h. It turns out that “stability” as defined
earlier might not be suitable for that (as they might yield over-pessimistic approximations for h,
especially when the original system is stiff). Various other stability schemes are then used (such as
absolute stability).

3 The DEVS Formalism

We first introduce the original DEVS formalism known as classic DEVS. The question whether
the formalism describes a “system” (i.e., under which conditions it is well-behaved is a system-
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theory sense) is also covered. It turns out that even a well-behaved DEVS model can behave in a
counter-intuitive manner. Finally, the P-DEVS formalism, which removes some deficiencies of the
original DEVS, is presented.

3.1 The Classic DEVS Formalism

Classic DEVS is an intrinsically sequential formalism that allows for the description of system
behaviour at two levels: at the lowest level, an atomic-DEVS describes the autonomous behaviour
of a discrete-event system as a sequence of deterministic transitions between states as well as how
it reacts to external inputs. At the higher level, a coupled-DEVS describes a discrete-event system
in terms of a network of coupled components, each an atomic-DEVS model (or a coupled-DEVS
in its own right, as we will see in section 3.2).

The atomic-DEVS

An atomic-DEVS M is specified by a 7-tuple

M �-, X � Y � S � δint � δext � λ � ta ./�
where:

X is the input set,

Y is the output set,

S is the state set,

δint : S + S is the internal transition function,

δext : Q 0 X + S is the external transition function, where

Q �1'2� s � e �
� s � S � 0 � e � ta � s ��( is the total state set, and
e is the elapsed time since the last transition.

λ : S + Y is the output function,

ta : S +�3 #54 	 0 � $ ∞ � is the time advance function.

There are no restrictions on the sizes of the sets, which typically are product sets, i.e., S � S1 0 S2 0����� 0 Sn. In the case of the state set S, this formalizes multiple concurrent parts of a system, while
it formalizes multiple input and output ports in the case of sets X and Y . The time base T is not
mentioned explicitly and is continuous. For a discrete-event model described by an atomic-DEVS
M, the behaviour is uniquely determined by the initial total state � s0 � e0 �6� Q and is obtained by
means of the following iterative simulation procedure (refer to Figure 2):

At any time t the system is in some state s � S. If no external event occurs, the system will stay
in state s until the elapsed time e reaches ta � s � . The time left, σ � ta � s �7� e, is often introduced
as an alternate way to check for the time until the next (internal) transition. The system then first
produces the output value λ � s � and makes a transition to state s � � δint � s � (e.g., at time t1 and
t3 in Figure 2). If an external event x � X occurs before e reaches ta � s � , the system interrupts
its autonomous behaviour and instantaneously goes to state s � � δext , � s � e ��� x . (e.g., at time t2 in
Figure 2). Thus, the internal transition function dictates the system’s new state based on its old
state in the absence of external events. The external transition function dictates the system’s new
state whenever an external event occurs, based on this event x, the current state s and how long the
system has been in this state, e. After both types of transitions, the elapsed time e is reset to 0.
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Figure 2: State Transitions of an atomic-DEVS Model

The term collision refers to the situation where an external transition occurs at the same time
as an internal transition. When such a collision occurs, the atomic-DEVS formalism specifies that
the tie between the two transition functions shall be solved by first carrying out the internal, then
the external transition function. This is consistent with the way collisions are handled in coupled-
DEVS, as will be seen shortly.

Note that ta � s � can take on values 0 and $ ∞: in the first case, the system stays in state s for
a time so short that no external event can intervene, and we say that s is a transitory state. In the
latter case the system stays in state s forever unless an external event occurs, and we say that s is a
passive state.

Outputs are associated only with internal transitions to impose a delay on the propagation of
events. In a modular construct (see coupled-DEVS below), zero-time propagation could result in
infinite instantaneous loops. Such ill-behaved (or ill-defined) systems can of course still be con-
structed using transitory states (despite only associating outputs with internal transitions). Actually,
instantaneous loops are at the heart of the legitimacy issue introduced in section 3.2. Since out-
puts are only generated in the absence of external events, the atomic-DEVS formalism is a Moore
machine. From an implementation point of view, it is easy to emulate the effect of generating an
output upon entering a state by using λ , δint � s � . .
The coupled-DEVS

A coupled-DEVS N is specified by a 7-tuple

N � , X � Y � D �>	 Mi �?�/	 I j �?�?	 Z j @ k �?� γ . �
where:
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X is the input set,

Y is the output set,

D is the set of component indexes,' Mi � i � D ( is the set of components, each Mi being an
atomic-DEVS:

Mi �A, Xi � Yi � Si � δint @ i � δext @ i � λi � tai .?�
' I j � j � D 4 	 self �B( is the set of all influencer sets, where I j C D 4 	 self �?� j �� I j is

the influencer set of j,' Z j @ k � j � D 4 	 self �?� k � I j ( is the set of output-to-input translation functions
where:

Z j @ k : X + Xk if j � self �
Z j @ k : Yj + Y if k � self �
Z j @ k : Yj + Xk otherwise.

γ : 2D + D is the select function .

The sets X and Y typically are product sets, which formalizes multiple input and output ports. To
each atomic-DEVS in the network is assigned a unique identifier in the set D. This corresponds to
model names or references in a modelling language. The coupled-DEVS N itself is referred to by
means of self �� D. This provides a natural way of indexing the components in the set 	 M i � , and
to describe the sets 	 I j � and 	 Z j @ k � .

B

XB YBZself D B
ZB D A

A

XA YA

Zself D A ZA D self

self

Xself Yself

Figure 3: coupled-DEVS

The sets in 	 I j � explicitly describe the coupling network structure: for instance, in Figure 3 we
have IA �E	 self � B � , IB �E	 self � and Iself �E	 A � . For modularity reasons, a component may not be
influenced by components outside its enclosing scope, defined as D 4 	 self � . The condition j �� I j
forbids a component to directly influence itself, to prevent instantaneous dependency cycles. The
functions Z j @ k describe how an influencer’s output is mapped onto an influencee’s input. The set
of output-to-input transition functions implicitly describes the coupling network structure, which
is sometimes divided into External Input Couplings (EIC, from the coupled-DEVS’ input to a
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component’s input ), External Output Couplings (EOC, from a component’s output to the coupled-
DEVS’ output ), and Internal Couplings (IC, from a component’s output to a component’s input ).

As a result of coupling concurrent components, multiple internal transitions may occur at
the same simulation time t. Since in sequential simulation systems only one component can be
activated at a given time, a tie-breaking mechanism to select which of the components should be
handled first is required. The classic coupled-DEVS formalism uses the select function γ to choose
a unique component from the set of imminent components, defined as Πt �F	 i � i � D � σi � 0 � ,
i.e., those components that have an internal transition scheduled at time t. The component returned
by γ � Πt � will thus be activated first. For the other components in the imminent set, we are left with
the following ambiguity [2]: when an external event is received by a model at the same time as its
scheduled internal transition, which elapsed time should be used by the external transition: e � 0
of the new state, or e � ta � s � of the old state? These collisions are resolved by letting e � 0 for the
unique activated component, and e � ta � s � for all the others.

3.2 Well-Defined Systems and Legitimacy

It is shown in [12] how the classic DEVS formalism is closed under coupling: given a coupled
model N with atomic-DEVS components, we can construct an atomic-DEVS Mres. The construc-
tion procedure is compliant with our intuition about concurrent behaviour and resembles the im-
plementation of event-scheduling simulators. At its core is the total time-order of all events in the
system. By induction, closure under coupling leads to hierarchical model construction, where the
components in a coupled model can themselves be coupled-DEVS. This means that the results
developed for atomic-DEVS in this section also apply to coupled models.

We have emphasized in the previous section how transitory states in a DEVS model could
result in an ill-behaved system when zero-time advance cycles are present. Legitimacy is the prop-
erty of DEVS that formalizes these notions.

For an atomic-DEVS M, we define legitimacy by first introducing an iterative internal transi-
tion function δ #int : S 0 � + S, that returns the state reached after n iterations starting at state s � S
when no external event intervenes. It is recursively defined as

δ #int � s � n �G� δint , δ #int � s � n � 1 ��.
δ #int � s � 0 �G� s �

Next we introduce a function Γ : S 0IHJ+K3 #0 that accumulates the time the system takes to make
these n transitions:

Γ � s � n �G� Γ � s � n � 1 � $ ta , δ #int � s � n � 1 � .
� n " 1

∑
i L 0

ta , δ #int � s � i ��.
Γ � s � 0 �G� 0 �

With these definitions, we say that a DEVS is legitimate if for each s � S,

lim
n ) ∞

Γ � s � n �&+ ∞ �
Equivalently, legitimacy can be interpreted as a requirement that there are only a finite number of
events in a finite time-span. It can be shown that the structure specified by a DEVS is a well-defined
system if, and only if, the DEVS is legitimate.

9



For atomic-DEVS M with S finite, a necessary and sufficient condition for legitimacy is that
every cycle in the state diagram of δint contains at least one non-transitory state. For the case where
S is infinite however, there exists only a stronger-than-necessary sufficient condition, namely, that
there is a positive lower bound to the time advances, i.e., � b s.t. � s � S � ta � s �NM b. In the context of
our work this condition is too restrictive, and we will want to refine it as explained in section 5.1.

3.3 The P-DEVS Formalism

Because of the inherent sequential nature of classic DEVS, modelling using this formalism re-
quires extra care. As a matter of fact, resolving collisions by means of the select function γ might
result in counter-intuitive behaviours.

The Parallel-DEVS formalism [2] (or P-DEVS, to distinguish it from parallel implementa-
tions of both classic DEVS and P-DEVS) was introduced to solve these problems by properly
handling collisions between simultaneous internal and external events. As the name indicates, P-
DEVS is a formalism whose semantics successfully describes (irrespective of sequential or parallel
implementations) concurrent transitions of imminent components, without the need for a priority
scheme.

Just as in the case of classic DEVS, P-DEVS allows for the description of system behaviour at
the atomic and coupled levels. The formalism is closed under coupling, which leads to hierarchical
model construction. The concepts of legitimacy introduced in the previous section also apply to
P-DEVS.

The formalism uses a bag as the message structure: a bag X b of elements in X is similar to a
set except that multiple occurrences of elements are allowed (e.g., xb �1	 a � b � a �O� Xb). As with
sets, bags are unordered. By using bags to collect inputs sent to a component, we recognize that
inputs can arrive from multiple sources and that more than one input with the same identity may
arrive simultaneously.

The atomic formalism for P-DEVS M is specified by an 8-tuple

M � , X � Y � S � δint � δext � δcon � λ � ta . �
The definition is almost identical to that of the classic version, except that we introduce the concept
of a bag in the external transition and output functions:

δext : Q 0 Xb + S �
λ : S + Y b �

This reflects the idea that more that one input can be received simultaneously, and similarly for the
generation of outputs. P-DEVS also introduces the confluent transition function

δcon : S 0 Xb + S �
which gives the modeller complete control over the collision behaviour when a component receives
external events at the time of its internal transition. Rather than serializing model behaviour at
collision times through the select function γ at the coupled level, P-DEVS leaves the decision of
what serialization to use to the individual component.

It follows that the coupled formalism for P-DEVS N is specified by a 6-tuple

N � , X � Y � D �>	 Mi �?�?	 I j �?�/	 Z j @ k �?� . �
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We note the absence of the select function γ. All the remaining elements have the same interpre-
tation as in the classic version, except that here again the bag concept must be introduced in the
output-to-input translation functions 	 Z j @ k � .

The semantics of the formalism is simple: at any event time t, all components in the immi-
nent set Πt first generate their output, which get assembled into bags at the proper inputs. Then,
to each component in Πt is applied either the confluent or the internal transition function, de-
pending whether it has received inputs or not. The external transition function is applied to those
components that have received inputs and are outside the imminent set.

4 Quantization Approach to the Numerical Solution of ODEs

As an alternative to the traditional discretization approach to the solution of ODEs briefly intro-
duced in section 2, Zeigler [12] has proposed an approach based on partitioning of the state space
rather than of the time domain. This quantization approach requires a change in viewpoint. The
question “at which point in the future is the system going to be in a given state” is now asked
instead of “in which state is the system going to be at a given future time”. In both questions a
numerical procedure to produce the answer is derived from the ODE model.

When applied to a continuous signal, both quantization and discretization approaches yield an
exact representation of the original signal only in the limit case where the partition size goes to
zero (assuming a well-posed problem). Whereas DTSS seem to match discretized signals well, it
turns out that DEVS is an appropriate formalism for quantized systems. Material in this section is
derived from chapter 16 of Zeigler et al. [12].

4.1 Quantization Principles

We present a simple quantization πX of the space X , an interval over 3 , as follows: we introduce
the sets di � ' x � x � X � D

2 � 2i � 1 � � x � D
2 � 2i $ 1 � ( , i �PH . Each denotes a quantum (or cell, block )

of X , where D is the (uniform) quantum-size. In general, the sets di represent a tessellation of the
space X , i.e., Q i di � X and � i R� j � di S d j � /0. This could obviously be extended to higher-
dimensions, defining “tiles” of arbitrary shapes, or of non-uniform sizes.

In each quantum a representative item Tdi is designated: in our example, we chose it to be the
“middle element” (given by Di) of the quantum. Then πX �1'2� di � Tdi �*� i �UHV( . Under that scheme,
we use the notation W x X to refer to the quantum containing the point x. Furthermore, we extend the
“tilde” notation to the quantization itself, denoting by YπX the set of representatives. A more formal
definition of quantization can be found in [7].

For a time base T �Z3 , we define a closed interval as W t1 � t2 X*�
	 t � t � T � t1 � t � t2 � , and the
open interval X t1 � t2 W is defined in the obvious manner. We generally use the notation [ t1 � t2 \ to refer
to an interval that is either closed or open at either end. Then a function u : [ t1 � t2 \ + X , or u ] t1 @ t2 ^ ,
is called a segment over X and T .

Using the simple quantizaton scheme introduced above, we define the quantization of a seg-
ment u ] ta @ tb ^ as the piecewise-continuous segment

u _ ] ta @ tb ^ � u1 ` ta a t1 b � u2 ` ta a t2 b ����� un ` tn c 1 a tb b �
where each ui ` ti c 1 a ti b is a constant segment of value Td j , such that the range of the corresponding
segment u ] ti c 1 @ ti ^ lies entirely in quantum d j (refer to Figure 4). We introduce a quantizer as a I/
O-system QπX that outputs the quantized version of its input.

Quantization suggests a new approach to solving ODEs, where a system updates its output
only when a “sufficiently important” change has occurred in its state.
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Figure 4: Discretization (a) and Quantization (b) of the same segment

4.2 DEVS Representation of Quantized Systems

By quantizing the input and output of a system S we obtain a quantized system, represented as
S _ �e[ QπX � S � QπY \ . This notation should be interpreted as a cascade of systems: the input quantizer
QπX sends the quantized version (a segment over YπX and T ) of an input segment (over X and T ) to
the internal system S, which sends its output (a segment over Y and T ) to the output quantizer QπY .
Hence, whereas the internal system S has input and output sets X and Y , the quantized system S _
has input and output sets X and YπY . Here again we assume the sets X and Y are intervals over 3 ,
and the input and output quantizers use quantum sizes D1 and D2, respectively.

Quantization of systems is a general concept that imposes no constraints on the internal sys-
tem S. We will assume for our present purpose that it represents a continuous-time system. The
quantized system S _ is equivalent to the internal system S only in the limit case where D1 and D2
tend to 0.

It turns out that every quantized system can be simulated, without error, by a DEVS. This
claim requires a precision regarding the nature of input signals: since discrete-event formalism are
not compatible with continuous signals, the quantized DEVS equivalent of a quantized system
expecting a continuous signal, will itself expect a piecewise constant approximation of a signal
(actually represented by the equivalent event signal ). Since we would expect the quantization of
both (continuous, and piecewise constant approximation) signals to be identical, it is reasonable to
assume the approximation scheme is indeed a quantization scheme. We will use this assumption,
which eliminates the need for an input quantizer, when describing a DEVS quantized integrator
below. We also observe that the quantization of a continuous signal has the property that each
piecewise constant segment is exactly one quantum “above” or “below” its adjacent segments:
this characteristic, quanta-continuity , could be exploited where applicable to reduce the size of
messages to one single bit.

To give some insight in how to represent a quantized system by a DEVS, assume the internal
system S has a set of states Q, and input and output sets X and Y . To map S onto an atomic-DEVS
M, we let the DEVS’ input and output sets be XM � X and YM � Y . The state set is given by
SM � Q 0 YπX , where the second component allows the DEVS to remember its last (quantized)
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input. The time advance function ta is then the time to the next change in output produced by the
output quantizer QπY . The output function λ outputs the representative of the new quanta, while
the internal transition function δint updates the state’s first component accordingly. If a new input
x � is received, δext updates the DEVS’ state as specified in the system S.

The first consequence of this is immediate: a (quantized) ODE can be simulated by a DEVS.
This opens interesting perspectives. Since DEVS is closed under coupling, a quantized ODE can
readily be coupled with, and interact with, purely discrete-event components. However, some care
must be taken to avoid sending a quantized signal to a quantizer with a finer quantum size, which
could result in unexpected results (as this could break the quanta-continuity property described
above). This requirement is called partition refinement .

A second consequence stems from the quantized system versus DEVS equivalence. A quan-
tized system S _ can be obtained by literally sandwiching a system S between quantizers. Since this
new system behaves as a DEVS, it can readily be coupled with DEVS, or other quantized systems
for that matter. This idea, which allows coupling of various formalisms, is referred to as system
wrapping . It is the basis of the DEVS bus concept.

4.3 Quantization Example

In this section we present some early empirical results obtained by experimenting with a DEVS
quantized integrator as described in [12].

f

f 8 q 9

qq g
O

Figure 5: Causal-Block Diagram of an ODE

In section 2 we introduced the canonical form of an ODE. The autonomous, first-order form is

q ��� f � q �
q � t0 �G� q0 �

Integrating both sides of the ODE, we can rewrite it as

q � t f �&� q � t0 � $ih t f

t0
f , q � t � . dt �

In causal-block diagram simulation systems, this can be simply implemented as an integrator block
with feedback, as illustrated in Figure 5. The traditional Euler-Cauchy method can be obtained by
discretizing the equation, after approximating the integral on the right-hand side by � t f � t0 � �
f , q � t0 �<. . We adapt this scheme to the DEVS quantized integrator by approximating the integral
by ex, where e is the elapsed time and x is the last input. It follows that when entering a new state
(either after an internal or external transition), the time of residency in that state (time advance
function) is obtained by solving the equation for the time until the current quantum is departed.

Using the simple quantization scheme described in section 4.1, the DEVS quantized integrator
is defined as follows:
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Figure 6: DEVS Quantized Integrator

j The input and output sets X and Y , as well as the set Q, are subintervals of 3 . The same
quantum size D is used for both;j We define the state set as S � Q 0UYπX 0IYπQ, such that for a state s �k� q � x � r � , q is the state
itself, x stores the last input received (i.e., the slope) and r is the representative Y W q X . The latter
component is necessary to break ties when q is at a quanta interface;j The internal transition function brings the state component q to the quanta interface “above”
or “below”, depending on the sign of the slope x:

δint , q � x � r .l�A, r $ D
2 � sign � x ��� x � r $ D � sign � x �/.m�

Above and below are the only possibilities here, due to the continuity of q. The integral
approximation is simplified by substituting the expression for ta � s � in place of the elapsed
time e;j The external transition function applies the Euler-Cauchy approximation of an integral, and
stores the input received:

δext , � q � x � r ��� e � x � . � , q $ ex � x � � r . ;j The output function returns the representative of the quantum the state is entering:

λ , q � x � r . � r $ D � sign � x � ;
14



j the time advance function returns the time to the next scheduled internal transition, i.e., the
time until the current quantum is departed:

ta , q � x � r .l� $ ∞ if x � 0

� nnn q " , r #
D
2 o sign p x q . nnnr
x
r otherwise �

the numerator being the distance between the state q and the relevant quanta interface.

This prototype was implemented using a classic DEVS modelling and simulation package
prototype that we wrote in Python. The actual code for the DEVS quantized integrator is presented
in the appendix, and shows the simple syntax used to define a model.

f fs y g x
O

y t x g

Figure 7: Causal-Block Model for the Circle Test

We performed a few tests with the circle test equation,

q � � �u� q

whose analytical solution is
q � t �&� c1 � cos � t � $ c2 � sin � t ���

where c1 and c2 and constants that depend on the initial conditions. It would be possible to ap-
proximate this ODE as an autonomous (i.e., input-free) atomic-DEVS: however, using the DEVS
quantized integrator presented above first requires us to rewrite the second order ODE as two
coupled first-order ODEs:

x � � y (1)

y � � � x � (2)

The corresponding causal-block diagram is depicted in Figure 7. At the coupled level, the DEVS
model includes two DEVS quantized integrators arranged in the same feedback pattern (see the
appendix for the actual implementation of the coupled-DEVS model). The “gain” block in our
case was included in the leftmost atomic-DEVS, and collisions were resolved by inserting passive
buffers on the two couplings: although these 0-delay blocks violate the “strong” DEVS legitimacy
condition stated in section 3.2, it turns out the model is still legitimate. The input and output
quanta sizes D are identical, which seems reasonable because of feedback. Moreover, since the
integrator’s internal state q is continuous (piecewise linear) and since the output is the quantization
of that state, the output signal has the “quanta continuous” property.

The circle test being a second-order ODE, initial conditions must be specified for both x � 0 �
and y � 0 �l� x � � 0 � . Choosing these to be 1 and 0 respectively, the analytical solution reduces to
x � t �l� cos � t � . In Figures 8 and 9, we show the evolution of the first integrator’s internal state
q as a function of time, as obtained by simulating the model with a quanta size D � 0 � 1. The
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analytical solution is shown for comparison, and the first figure also shows the results obtained
with a traditional Euler-Cauchy scheme (discretization) with a step-size h � 0 � 02. This resolution
was chosen to roughly correspond to the minimum time between two internal transitions in the
quantized counterpart.

Analytic
Quantized

Discretized

π 2π 3π 4π 5π 6π 7π0

s 1

0

1

Figure 8: Simulation of the Circle Test Problem

The striking feature is that while the error on the discrete solution increases exponentially, the
quantized solution remains bounded. Actually, as evidenced in Figure 9, the quantized solution
lags behind the analytical solution: it might be intuitively appealing to postulate that whereas a
discretization scheme introduces errors in the state space, a quantization scheme should introduce
errors in the time domain (phase shift). This would be consistent with the fact that we solve an
(approximate) equation for time in the latter scheme. Our empirical results suggest that the lag
grows linearly rather than exponentially. A comparison of the errors will require us to define a
metric applicable to both (e.g., difference in phase-space). A simulation with t varying from 0 to
12π required roughly 480 transitions in the quantized solution, and around 1880 iterations in the
discretized solution: however, whereas the cost of an iteration is a single flop, a transition is far
more expensive (the functions of the DEVS quantized integrator cost by themselves four flops,
and this is without counting all the overhead introduced by the coordination at the coupled-DEVS
level). The quantized approach thus seems to be more expensive.

5 Thesis Objectives

The early results presented in the last section tend to confirm the usefulness of the quantization
approach for ODEs, and the relevance of the DEVS formalism in that context. The many questions
raised by these empirical results will be studied in full detail in our work. We already emphasized
that the main advantages of the approach would be: i) a more elegant way of building hybrid (and
more generally, multi-formalism) systems, and ii) increased possibilities for distributed (parallel)
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Figure 9: Circle Test Problem after t � 20π

implementations. We will keep these notions in mind through all steps of our work, as they will
define the context of our central work.

For the quantization strategy to become an interesting alternative to traditional discretization
methods, we will need to provide an elaborate analysis of the approach, as well as usable, efficient
algorithms. We thus intend to iterate our work over different aspects pertaining to both the theoret-
ical aspects of mapping , and the implementation of a modelling and simulation package (based on
a sequential implementation of a P-DEVS simulator). These aspects are orthogonal to the context,
and are detailed below.

5.1 Theoretical Aspects of Mapping

The study of theoretical aspects of mapping encompasses several key issues for the success of
practical implementations. Zeigler et al. [12] have done some work in that direction, from defining
the DEVS formalism and proving some of its properties, to showing the equivalence of quantized
systems and DEVS. However, many points require further exploration, while some other important
aspects have not been worked out. We propose to cover the following topics:

j Approximation schemes are validated through numerical analysis: establishing the true value
of a method can only be done by applying it to various classes of systems, and then studying
the stability and convergence properties of the quantized system that results. This is essential
in determining the value of a method, and its field of application (if any). Also, by determin-
ing the weaknesses and strengths of a method, we can gain insights into how to improve or
design new approaches. To our knowledge, no such rigourous analysis from a quantization
perspective has been done yet. We observed in the case of the circle test problem above that
the accumulation of errors results in a phase shift, whereas the range of the solution remains
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bounded: we will have to further study this result in detail. The numerical analysis of stabil-
ity and convergence (together with sensitivity analysis) of various schemes will be a crucial
part of our work.j In the last section we introduced a simple, Euler-like approximation method for the DEVS
quantized integrator. Although the first empirical results are promising, we will need, in
order to satisfy more severe accuracy requirements, to develop higher-order approximation
schemes based on the Taylor expansion of y � t � . We note that the Taylor expansion of a
function of time t is a polynomial in some ∆t: since we want to solve for this variable in
quantization schemes (i.e., when is the system going to transition to a given state), we will
have to deal with implicit equations. It follows that developing higher-order approximations
in the quantization context is not a simple, trivial generalization of those in the discretization
context.j By the closure property of DEVS, it is established that a network of quantized DEVS will
be a valid system (under the legitimacy constraint). We have mentioned in section 4.2 the
partition refinement requirement, which ensures that a coupled model of quantized systems
can component-wise simulate its sub-models. However, this says nothing about the stability
of the resulting model: by analogy, it is established that multi-rate integration can greatly
impact on the stability of (tightly) coupled discretized models [4]. We thus plan to study the
effects of various coupling patterns (i.e., various quanta sizes and coupling densities) on the
stability of the resulting system: this is of a particular importance when the error tolerance
dictates quanta sizes that are incompatible with the partition refinement requirement (e.g., a
stiff coupled system composed of a fast subsystem with large quanta size upstream a slow
subsystem with small quanta size).j The obvious way to map a semi-explicit DAE onto a quantized DEVS would be to first
preprocess the DAE (see section 2.1), and to map the resulting set of ODEs in the usual
manner. An alternative approach might be considered, if the semi-explicit DAE is derived
from a causal-block oriented formalism (e.g., Simulink ): it would then seem natural to per-
form a block-wise quantization and couple the resulting DEVS’s as in the original model.
However, as seen in section 3.2, the current (sufficient) requirements for legitimacy do not
allow zero-delay components in the presence of quantized DEVS. We will be interested in
finding less-restrictive conditions for legitimacy: weak-legitimacy would designate legiti-
mate system where instantaneous transitions are possible.
However, well-behavedness could still be compromised by algebraic-loops. We note that we
can draw a parallel between the elimination of algebraic loops in the DEVS model, and the
preprocessing of the DAE. We will investigate the possibility of performing loop-detection
and resolution at the coupled-DEVS level.j Since the quantized DEVS approach is in direct competition with traditional approaches, it
is important to compare the two paradigms: we want to know which are the strengths and
weaknesses of each when planning to perform a simulation. When comparing discretization
schemes with one another, various metrics can be chosen, such as error or execution time.
However, comparing one paradigm with the other might not be so obvious, as a metric
in discretization might not have its direct equivalent in quantization (e.g., a small error in
timing might correspond to an important error in state space).

5.2 A Modelling and Simulation Package

The ideas developed above will be validated and tested in an actual implementation: “real-life”
performance analyses will be conducted, where the quantization approach will be compared with
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the traditional discretization approach, and with analytical solutions whenever possible.
We already developed at an earlier stage of our work a DEVS modelling and simulation pack-

age: the simulations in section 4.3 were conducted using this prototype, which provides a simple
syntax to easily define atomic- and coupled-DEVS models. The Python scripting language was
used to implement the classic DEVS formalism introduced in section 3. At the present stage of our
work, we are ready to start the implementation of a (sequential) P-DEVS package; we will add on
top of that the necessary libraries to deal specifically with quantized ODEs as our theoretical work
progresses. These tools will allow us to test various optimization ideas:

j The idea of adaptive step-size often used with traditional integrators might be transposed to
quantization as adaptive quantas, to satisfy precision-speed tradeoffs. A related idea involves
the use of static, non-uniform quanta sizes. An expression for the error term, obtained from
numerical analysis, will be required to evaluate the effect of coarseness.j The optimization procedures such as the preprocessing of semi-explicit DAEs described
in the previous section could be completed by conducting a dependency analysis of the
resulting ODE with constraints, to determine appropriate clustering of equations into DEVS
sub-models. This would minimize the number of messages sent at the coupled-DEVS level.
The idea of clustering have an immediate impact on distributed implementations.j In hybrid models, monitoring functions are used to trigger events when given conditions are
satisfied by a model. These unscheduled events are often interpreted as a signal to change
the dynamic mode of the system. Our extension libraries will support such requirements by
allowing variable-structure DEVS to be created: this will be accomplished by sending the
relevant events to a dedicated “supervisor” DEVS, responsible for activating and passivating
the sub-models.j In later stages of the prototype, two full-scale benchmark application will be used: on the one
hand, Activated Sludge Waste Water Treatment Plant (WWTP) models for the optimal de-
sign and control of municipal WWTPs (see BIOMATH’s WEST++, www.hemmiswest.com).
On the other hand, Rigid Body Dynamics models (RBD) as used for training simulators and
state-of-the-art computer games (see MathEngine’s Dynamic Engine 2, www.mathengine.com).
We emphasize that these will allow us to validate the DEVS formalism with both engineer-
ing and animation applications, where the focus is on precision and speed respectively.
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Appendix

In this appendix we present the actual code that defines a quantized integrator DEVS. We also
include the code that describes how two such integrators are arranged to solve the circle test prob-
lem.

DEVS Quantized Integrator

class Integrator(AtomicDEVS):
""" Solves for: dy/dt = c*x
Where y: OUTPUT,

x: INPUT (slope)
c: input GAIN (constant)

Ouput is the quantized state of the integrator.
"""
def __init__(self, d, c = 1., i = [0., 0.]):

""" CONSTRUCTOR
d: quanta size
c: input gain
i: initial state

"""
# Always call parent class’ constructor first:
AtomicDEVS.__init__(self)
# Make local copies of parameters:
self.D = d
self.c = c
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# state is: (actual state, slope, quanta_repres)
# the last input received is stores as the slope
# fruntion ‘repres’ gives the representative
self.state = i
quant = repres(self.state[0], self.D)
if abs(quant - self.state[0]) == self.D/2.0: # Original state on

if self.state[1] < 0: # quanta interface
quant = quant - D

self.state.append(quant)
self.elapsed = 0.
# PORTS:
self.IN = self.addInPort()
self.OUT = self.addOutPort()

def extTransition(self):
"""External Transition Function.
"""
Nstate = self.state[0] + (self.elapsed * self.state[1])
Nslope = self.c * self.peek(self.IN)
return [Nstate, Nslope, self.state[2]]

def intTransition(self):
"""Internal Transition Function.
"""
Nstate = self.state[2] + sign(self.state[1]) * self.D/2.0
Nquant = self.state[2]t + sign(self.state[1]) * self.D
return [Nstate, self.state[1], Nquant]

def outputFnc(self):
"""Output Funtion.
"""
Nout = self.state[2] + sign(self.state[1]) * self.D
self.poke(self.OUT, Nout)

def timeAdvance(self):
"""Time-Advance Function.
"""
if self.state[1] == 0:

return 100000.0 # Stands for infinity
Bound = self.state[2] + sign(self.state[1]) * self.D/2.0
Dstate = abs(Bound - self.state[0])
return Dstate / abs(self.state[1])

Coupled-DEVS for the Circle Test

class System(CoupledDEVS):
"""Couples two integrators in a loop
"""
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def __init__(self, d1, d2 = 0):
"""CONSTRUCTOR

d1 and d2 are the respective quanta sizes
for the two integrators (typically identical)

"""
# Always call parent class’ constructor first:
CoupledDEVS.__init__(self)
# PORTS:
self.OUT1 = self.addOutPort()
self.OUT2 = self.addOutPort()
# Validate quanta sizes
if d2==0:

d2 = d1
# Initial conditions
start = [1.0, 0.0]
# Declare sub-models: Note that the ‘Processor’ atomic-DEVS
# are simple 0-delay elements
self.Int1 = self.addSubModel( Integrator(d1, 1.0, start) )
self.Int2 = self.addSubModel( Integrator(d2, -1.0, [start[1], -start[0]]) )
self.Del1 = self.addSubModel( Processor() )
self.Del2 = self.addSubModel( Processor() )
# Describe couplings:
self.connectPorts(self.Int1.OUT, self.Del1.IN)
self.connectPorts(self.Del1.OUT, self.Int2.IN)
self.connectPorts(self.Int2.OUT, self.Del2.IN)
self.connectPorts(self.Del2.OUT, self.Int1.IN)
self.connectPorts(self.Int1.OUT, self.OUT1)
self.connectPorts(self.Int2.OUT, self.OUT2)

def select(self, imm):
"""Select function.

imm is the set of imminent components
"""
return imm[0]
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